Nanogenerator

A nanogenerator is a compact device that converts mechanical or thermal energy into electricity, serving to harvest energy for small, wireless autonomous devices. It uses ambient energy sources like solar, wind, thermal differentials, and kinetic energy. Nanogenerators can use ambient background energy in the environment, such as temperature gradients from machinery operation, electromagnetic energy, or even vibrations from motions.

Energy harvesting from the environment has a very long history, dating back to early devices such as watermills, windmills and later hydroelectric plants. More recently there has been interest in smaller systems. While there was some work in the 1980s on implantable piezoelectric devices,[1][2] more devices were developed in the 1990s including ones based upon the piezoelectric effect,[3][4] electrostatic forces,[5] thermoelectric effect[6] and electromagnetic induction[7][8] -- see Beeby et al for a 2006 review.[9] Very early on it was recognized that these could use energy sources such as from walking in shoes,[10] and could have important medical applications,[4] be used for in vivo MEMS devices[11] or be used to power wearable computing.[12] Many more recent systems have built onto this work, for instance triboelectric generators,[13] bistable systems,[14] pyroelectric materials[15] and continuing work on piezoelectric systems[16] as well as those described in more general overviews[17] including applications in wireless electronic devices[18] and other areas.

There are three classes of nanogenerators: piezoelectric, triboelectric, both of which convert mechanical energy into electricity, and pyroelectric nanogenerators, which convert heat energy into electricity.[19]

  1. ^ Häsler, E.; Stein, L.; Harbauer, G. (October 1984). "Implantable physiological power supply with PVDF film". Ferroelectrics. 60 (1): 277–282. doi:10.1080/00150198408017528. ISSN 0015-0193.
  2. ^ Cochran, George V. B.; Kadaba, Murali P.; Palmieri, Vincent R. (January 1988). "External ultrasound can generate microampere direct currents in vivo from implanted piezoelectric materials". Journal of Orthopaedic Research. 6 (1): 145–147. doi:10.1002/jor.1100060119. ISSN 0736-0266. PMID 3334735.
  3. ^ Umeda, Mikio; Nakamura, Kentaro; Ueha, Sadayuki (1996-05-01). "Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator". Japanese Journal of Applied Physics. 35 (5S): 3267. doi:10.1143/jjap.35.3267. ISSN 0021-4922.
  4. ^ a b Antaki, James F.; Bertocci, Gina E.; Green, Elizabeth C.; Nadeem, Ahmed; Rintoul, Thomas; Kormos, Robert L.; Griffith, Bartley P. (July 1995). "A Gait-Powered Autologous Battery Charging System for Artificial Organs". ASAIO Journal. 41 (3): M588–M595. doi:10.1097/00002480-199507000-00079. ISSN 1058-2916. PMID 8573873.
  5. ^ Tashiro, Ryoichi; Kabei, Nobuyuki; Katayama, Kunimasa; Ishizuka, Yoshizo; Tsuboi, Fuminori; Tsuchiya, Kiichi (2000). "Development of an Electrostatic Generator that Harnesses the Motion of a Living Body. Use of a Resonant Phenomenon". JSME International Journal Series C. 43 (4): 916–922. doi:10.1299/jsmec.43.916. ISSN 1344-7653.
  6. ^ Kiely, J.J.; Morgan, D.V.; Rowe, D.M.; Humphrey, J.M. (1991). "Low cost miniature thermoelectric generator". Electronics Letters. 27 (25): 2332. doi:10.1049/el:19911444. ISSN 0013-5194.
  7. ^ Williams, C.B.; Yates, R.B. (1995). "Analysis of a Micro-electric Generator for Microsystems". Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95. Vol. 1. IEEE. pp. 369–372. doi:10.1109/sensor.1995.717207.
  8. ^ Shearwood, C.; Yates, R.B. (1997). "Development of an electromagnetic micro-generator". Electronics Letters. 33 (22): 1883. doi:10.1049/el:19971262. ISSN 0013-5194.
  9. ^ Beeby, S P; Tudor, M J; White, N M (2006-12-01). "Energy harvesting vibration sources for microsystems applications". Measurement Science and Technology. 17 (12): R175–R195. doi:10.1088/0957-0233/17/12/R01. ISSN 0957-0233.
  10. ^ Kymissis, J.; Kendall, C.; Paradiso, J.; Gershenfeld, N. (1998). "Parasitic power harvesting in shoes". Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215). IEEE Comput. Soc. pp. 132–139. doi:10.1109/ISWC.1998.729539. ISBN 978-0-8186-9074-7.
  11. ^ Clark, William W.; Mo, Changki (2009), "Piezoelectric Energy Harvesting for Bio MEMS Applications", Energy Harvesting Technologies, Boston, MA: Springer US, pp. 405–430, doi:10.1007/978-0-387-76464-1_16, ISBN 978-0-387-76463-4, retrieved 2024-10-17
  12. ^ Starner, T. (1996). "Human-powered wearable computing". IBM Systems Journal. 35 (3.4): 618–629. doi:10.1147/sj.353.0618. ISSN 0018-8670.
  13. ^ Fan, Feng-Ru; Tian, Zhong-Qun; Lin Wang, Zhong (March 2012). "Flexible triboelectric generator". Nano Energy. 1 (2): 328–334. doi:10.1016/j.nanoen.2012.01.004. ISSN 2211-2855.
  14. ^ Harne, R L; Wang, K W (2013-01-28). "A review of the recent research on vibration energy harvesting via bistable systems". Smart Materials and Structures. 22 (2): 023001. doi:10.1088/0964-1726/22/2/023001. ISSN 0964-1726.
  15. ^ Bain, Ashim Kumar; Chand, Prem (2022-09-02). "Pyroelectric Energy Harvesting". Pyroelectric Materials: 173–219. doi:10.1002/9783527839742.ch5. ISBN 978-3-527-35101-5.
  16. ^ Cook-Chennault, K A; Thambi, N; Sastry, A M (2008-06-09). "Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems". Smart Materials and Structures. 17 (4): 043001. doi:10.1088/0964-1726/17/4/043001. hdl:2027.42/64168. ISSN 0964-1726.
  17. ^ Sirohi, Jayant (2021), "Wind energy harvesting using piezoelectric materials", Ferroelectric Materials for Energy Harvesting and Storage, Elsevier, pp. 187–207, doi:10.1016/b978-0-08-102802-5.00006-6, ISBN 978-0-08-102802-5, retrieved 2024-10-17
  18. ^ O'Donnell, Richard (September 2008). "Prolog to: Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices". Proceedings of the IEEE. 96 (9): 1455–1456. doi:10.1109/jproc.2008.927493. ISSN 0018-9219.
  19. ^ Sripadmanabhan Indira, Sridhar; Aravind Vaithilingam, Chockalingam; Oruganti, Kameswara Satya Prakash; Mohd, Faizal; Rahman, Saidur (May 20, 2019). "Nanogenerators as a Sustainable Power Source: State of Art, Applications, and Challenges". Nanomaterials. 9 (5): 773. doi:10.3390/nano9050773. ISSN 2079-4991. PMC 6566161. PMID 31137520.