Nanoparticle drug delivery

Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. The modern form of a drug delivery system should minimize side-effects and reduce both dosage and dosage frequency. Recently, nanoparticles have aroused attention due to their potential application for effective drug delivery.[1]

Nanomaterials exhibit different chemical and physical properties or biological effects compared to larger-scale counterparts that can be beneficial for drug delivery systems. Some important advantages of nanoparticles are their high surface-area-to-volume ratio, chemical and geometric tunability, and their ability to interact with biomolecules to facilitate uptake across the cell membrane. The large surface area also has a large affinity for drugs and small molecules, like ligands or antibodies, for targeting and controlled release purposes.

Nanoparticles refer to a large family of materials both organic and inorganic. Each material has uniquely tunable properties and thus can be selectively designed for specific applications. Despite the many advantages of nanoparticles, there are also many challenges, including but not exclusive to: nanotoxicity, biodistribution and accumulation, and the clearance of nanoparticles by human body.

The National Institute of Biomedical Imaging and Bioengineering has issued the following prospects for future research in nanoparticle drug delivery systems:

  1. crossing the blood-brain barrier (BBB) in brain diseases and disorders;
  2. enhancing targeted intracellular delivery to ensure the treatments reach the correct structures inside cells;
  3. combining diagnosis and treatment.[2]

The development of new drug systems is time-consuming; it takes approximately seven years to complete fundamental research and development before advancing to preclinical animal studies.[3]

  1. ^ Nanoparticles as drug delivery systems,Pharmacological Reports, Volume 64, Issue 5,2012,Pages 1020-1037,ISSN 1734-1140, https://doi.org/10.1016/S1734-1140(12)70901-5.
  2. ^ Drug Delivery Systems: Getting Drugs to Their Targets in a Controlled Manner https://www.nibib.nih.gov/science-education/science-topics/drug-delivery-systems-getting-drugs-their-targets-controlled-manner.
  3. ^ Etheridge, M.L., et al., The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine: Nanotechnology, Biology and Medicine, 2013. 9(1): p. 1-14. doi: 10.1016/j.nano.2012.05.013. Epub 2012 Jun 6.