The mathematical formulation is the following: a Brownian particle (ion, molecule, or protein) is confined to a bounded domain (a compartment or a cell) by a reflecting boundary, except for a small window through which it can escape. The narrow escape problem is that of calculating the mean escape time. This time diverges as the window shrinks, thus rendering the calculation a singular perturbation problem.[3][4][5][6][7][8][9]
When escape is even more stringent due to severe geometrical restrictions at the place of escape, the narrow escape problem becomes the dire strait problem.[10][11]
The narrow escape problem was proposed in the context of biology and biophysics by D. Holcman and Z. Schuss,[12] and later on with A.Singer and led to the narrow escape theory in applied mathematics and computational biology.[13][14][15]
^M. J. Ward, S. Pillay, A. Peirce, and T. Kolokolnikov An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part I: Two-Dimensional Domains
^Holcman, D., & Schuss, Z. (2015). Stochastic Narrow Escape in Molecular and Cellular Biology: Analysis and Applications. Springer.
^Cheviakov, Alexei F.; Ward, Michael J.; Straube, Ronny (2010). "An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: The Sphere". Multiscale Modeling & Simulation. 8 (3). Society for Industrial & Applied Mathematics (SIAM): 836–870. doi:10.1137/100782620. hdl:11858/00-001M-0000-0013-908F-6. ISSN1540-3459.
^Cheviakov, Alexei F.; Zawada, Daniel (2013-04-22). "Narrow-escape problem for the unit sphere: Homogenization limit, optimal arrangements of large numbers of traps, and the N2 conjecture". Physical Review E. 87 (4). American Physical Society (APS): 042118. Bibcode:2013PhRvE..87d2118C. doi:10.1103/physreve.87.042118. ISSN1539-3755. PMID23679384.
^Coombs, Daniel; Straube, Ronny; Ward, Michael (2009). "Diffusion on a Sphere with Localized Traps: Mean First Passage Time, Eigenvalue Asymptotics, and Fekete Points". SIAM Journal on Applied Mathematics. 70 (1). Society for Industrial & Applied Mathematics (SIAM): 302–332. doi:10.1137/080733280. hdl:11858/00-001M-0000-0013-9335-3. ISSN0036-1399.
^D. Holcman Z. Schuss, The dire strait time, SIAM Multiscale Modeling and simulations, 10(4), 1204–1231.