A natural gas vehicle (NGV) utilizes compressed natural gas (CNG) or liquefied natural gas (LNG) as an alternative fuel source. Distinguished from autogas vehicles fueled by liquefied petroleum gas (LPG), NGVs rely on methane combustion, resulting in cleaner emissions due to the removal of contaminants from the natural gas source.
Conversion of existing gasoline or diesel vehicles to NGVs is feasible, offering both dedicated and bi-fuel options. Heavy-duty vehicles such as trucks and buses can also undergo conversion, utilizing spark ignition systems or hybrid electric motor configurations.
Challenges in NGV adoption include the storage and refueling of natural gas, given its pressurized or liquefied state. While advancements in compression and liquefaction mitigate energy density differences, trade-offs regarding storage container size, complexity, and weight impact vehicle range. Despite these challenges, the safety and cost advantages of methane over hydrogen fuel contribute to its viability.
Obstacles to widespread NGV adoption for private vehicles include concerns over additional weight, technological unfamiliarity, and limited refueling infrastructure in some regions. Nevertheless, global NGV numbers reached nearly 28 million by 2019,[1] with significant market presence in countries such as China, Iran, India, Pakistan, Argentina, Brazil, and Italy.