Neurotoxicity

Neurotoxicity is a form of toxicity in which a biological, chemical, or physical agent produces an adverse effect on the structure or function of the central and/or peripheral nervous system.[1] It occurs when exposure to a substance – specifically, a neurotoxin or neurotoxicant– alters the normal activity of the nervous system in such a way as to cause permanent or reversible damage to nervous tissue.[1] This can eventually disrupt or even kill neurons, which are cells that transmit and process signals in the brain and other parts of the nervous system. Neurotoxicity can result from organ transplants, radiation treatment, certain drug therapies, recreational drug use, exposure to heavy metals, bites from certain species of venomous snakes, pesticides,[2][3] certain industrial cleaning solvents,[4] fuels[5] and certain naturally occurring substances. Symptoms may appear immediately after exposure or be delayed. They may include limb weakness or numbness, loss of memory, vision, and/or intellect, uncontrollable obsessive and/or compulsive behaviors, delusions, headache, cognitive and behavioral problems and sexual dysfunction. Chronic mold exposure in homes can lead to neurotoxicity which may not appear for months to years of exposure.[6] All symptoms listed above are consistent with mold mycotoxin accumulation.[7]

The term neurotoxicity implies the involvement of a neurotoxin; however, the term neurotoxic may be used more loosely to describe states that are known to cause physical brain damage, but where no specific neurotoxin has been identified.[citation needed]

The presence of neurocognitive deficits alone is not usually considered sufficient evidence of neurotoxicity, as many substances may impair neurocognitive performance without resulting in the death of neurons. This may be due to the direct action of the substance, with the impairment and neurocognitive deficits being temporary, and resolving when the substance is eliminated from the body. In some cases the level or exposure-time may be critical, with some substances only becoming neurotoxic in certain doses or time periods. Some of the most common naturally occurring brain toxins that lead to neurotoxicity as a result of long term drug use are amyloid beta (Aβ), glutamate, dopamine, and oxygen radicals. When present in high concentrations, they can lead to neurotoxicity and death (apoptosis). Some of the symptoms that result from cell death include loss of motor control, cognitive deterioration and autonomic nervous system dysfunction. Additionally, neurotoxicity has been found to be a major cause of neurodegenerative diseases such as Alzheimer's disease (AD).[citation needed]

  1. ^ a b Cunha-Oliveira, Teresa; Rego, Ana Cristina; Oliveira, Catarina R. (June 2008). "Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs". Brain Research Reviews. 58 (1): 192–208. doi:10.1016/j.brainresrev.2008.03.002. hdl:10316/4676. PMID 18440072. S2CID 17447665.
  2. ^ Keifer, Matthew C.; Firestone, Jordan (31 July 2007). "Neurotoxicity of Pesticides". Journal of Agromedicine. 12 (1): 17–25. doi:10.1300/J096v12n01_03. PMID 18032333. S2CID 23069667.
  3. ^ Costa, Lucio, G.; Giordano, G; Guizzetti, M; Vitalone, A (2008). "Neurotoxicity of pesticides: a brief review". Frontiers in Bioscience. 13 (13): 1240–9. doi:10.2741/2758. PMID 17981626. S2CID 36137987.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Sainio, Markku Alarik (2015). "Neurotoxicity of solvents". Occupational Neurology. Handbook of Clinical Neurology. Vol. 131. pp. 93–110. doi:10.1016/B978-0-444-62627-1.00007-X. ISBN 978-0-444-62627-1. PMID 26563785.
  5. ^ Ritchie, Glenn D.; Still, Kenneth R.; Alexander, William K.; Nordholm, Alan F.; Wilson, Cody L.; Rossi III, John; Mattie, David R. (1 July 2001). "A review of the neurotoxicity risk of selected hydrocarbon fuels". Journal of Toxicology and Environmental Health Part B: Critical Reviews. 4 (3): 223–312. Bibcode:2001JTEHB...4..223R. doi:10.1080/109374001301419728. PMID 11503417.
  6. ^ Curtis, Luke; Lieberman, Allan; Stark, Martha; Rea, William; Vetter, Marsha (September 2004). "Adverse Health Effects of Indoor Molds". Journal of Nutritional & Environmental Medicine. 14 (3): 261–274. doi:10.1080/13590840400010318.
  7. ^ Kilburn, Kaye H. (2004). Role of Molds and Mycotoxins in Being Sick in Buildings: Neurobehavioral and Pulmonary Impairment. Advances in Applied Microbiology. Vol. 55. pp. 339–359. doi:10.1016/S0065-2164(04)55013-X. ISBN 978-0-12-002657-9. PMID 15350801.