Nicorandil

Nicorandil
Clinical data
Trade namesIkorel, others
AHFS/Drugs.comInternational Drug Names
Pregnancy
category
  • AU: B3
Routes of
administration
By mouth
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)[1]
  • UK: POM (Prescription only)
Pharmacokinetic data
Bioavailability75 to 80%
Protein binding25%
MetabolismLiver
Elimination half-life1 hour
ExcretionKidney (21%)
Identifiers
  • 2-[(pyridin-3-ylcarbonyl)amino]ethyl nitrate
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.059.541 Edit this at Wikidata
Chemical and physical data
FormulaC8H9N3O4
Molar mass211.177 g·mol−1
3D model (JSmol)
  • O=C(NCCO[N+]([O-])=O)c1cccnc1
  • InChI=1S/C8H9N3O4/c12-8(7-2-1-3-9-6-7)10-4-5-15-11(13)14/h1-3,6H,4-5H2,(H,10,12) checkY
  • Key:LBHIOVVIQHSOQN-UHFFFAOYSA-N checkY
 ☒NcheckY (what is this?)  (verify)

Nicorandil is a vasodilator drug used to treat angina.

Angina is chest pain that results from episodes of transient myocardial ischemia. This can be caused by diseases such as atherosclerosis, coronary artery disease and aortic stenosis. Angina commonly arises from vasospasm of the coronary arteries. There are multiple mechanisms causing the increased smooth muscle contraction involved in coronary vasospasm, including increased Rho-kinase activity. Increased levels of Rho-kinase inhibit myosin phosphatase activity, leading to increased calcium sensitivity and hypercontraction.[2] Rho-kinase also decreases nitric oxide synthase activity, which reduces nitric oxide concentrations.[3] Lower levels of nitric oxide are present in spastic coronary arteries.[4] L-type calcium channel expression increases in spastic vascular smooth muscle cells, which could result in excessive calcium influx, and hypercontraction.[5]

It was patented in 1976 and approved for medical use in 1983.[6]

  1. ^ "Prescription medicines: registration of new generic medicines and biosimilar medicines, 2017". Therapeutic Goods Administration (TGA). 21 June 2022. Retrieved 30 March 2024.
  2. ^ Kandabashi T, Shimokawa H, Miyata K, Kunihiro I, Kawano Y, Fukata Y, et al. (March 2000). "Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1beta". Circulation. 101 (11): 1319–1323. doi:10.1161/01.cir.101.11.1319. PMID 10725293.
  3. ^ Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK (July 2002). "Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase". Circulation. 106 (1): 57–62. doi:10.1161/01.cir.0000020682.73694.ab. PMID 12093770.
  4. ^ Kugiyama K, Yasue H, Okumura K, Ogawa H, Fujimoto K, Nakao K, et al. (August 1996). "Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina". Circulation. 94 (3): 266–271. doi:10.1161/01.cir.94.3.266. PMID 8759065.
  5. ^ Kuga T, Shimokawa H, Hirakawa Y, Kadokami Y, Arai Y, Fukumoto Y, et al. (May 2000). "Increased expression of L-type calcium channels in vascular smooth muscle cells at spastic site in a porcine model of coronary artery spasm". Journal of Cardiovascular Pharmacology. 35 (5): 822–828. doi:10.1097/00005344-200005000-00021. PMID 10813387.
  6. ^ Fischer J, Ganellin CR (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 454. ISBN 9783527607495.