Nili Patera dune field

Detail of the Nili Patera dune field lying on a bed of solidified lava
Location of Nili Patera

Nili Patera is a dune field on Mars. It is located on top of a lava bed, at the site of an ancient volcano, the Nili Patera caldera of Syrtis Major, near the Martian equator,[1] and it is one of the most active dune fields of Mars. Its location coordinates on Mars are 8.7° N latitude, 67.3° E longitude.[2] It is being actively studied by the HiRISE camera, on board the Mars Reconnaissance Orbiter, at the rate of one image every six weeks. The study of the movement of the dunes provides information regarding wind variation as a function of time and furthers the study of surface erosion characteristics of the Martian landscape. This information can then be used for the development and design of future Mars expeditions.[1][3] The dunes of the Patera field are of the barchan type and their study by HiRISE was the first one to establish dune and ripple movement of a minimum of 1 metre (3 ft 3 in) on Mars.[4] The Patera dune field, was also the first to be investigated using the COSI-Corr software, which was originally developed to analyse the movement of earthbound dunes.[4] The research results from the evidence provided by the monitoring of the Nili Patera field, indicate sand fluxes of the order of several cubic metres per metre per year, similar to the flux observed at the sand dunes of Victoria Valley in Antarctica.[5]

  1. ^ a b Amy Teitel (9 May 2012). "Dynamic Sand Dunes on Mars". americaspace.com.
  2. ^ Cite error: The named reference NASA2 was invoked but never defined (see the help page).
  3. ^ "Active Dune Field on Mars". NASA. 2 May 2014.
  4. ^ a b Ralph D. Lorenz; James R. Zimbelman (22 April 2014). Dune Worlds: How Windblown Sand Shapes Planetary Landscapes. Springer Science & Business Media. pp. 147–148. ISBN 978-3-540-89725-5. The barchan dunes of Nili Patera were the first place to provide documented evidence of ripple and dune movement on Mars of at least a meter, using repeat HiRISE images.
  5. ^ Paul E. Geissler, Nicholas W. Stantzos, Nathan T. Bridges, Mary C. Bourke, Simone Silvestro and Lori K. Fenton (17 September 2012). "Shifting sands on Mars: insights from tropical intra-crater dunes" (PDF). Earth Surface Processes and Landforms. 38 (4): 407–412. Bibcode:2013ESPL...38..407G. doi:10.1002/esp.3331. S2CID 130219854.{{cite journal}}: CS1 maint: multiple names: authors list (link)