This article needs additional citations for verification. (July 2012) |
In mathematical logic, a non-standard model of arithmetic is a model of first-order Peano arithmetic that contains non-standard numbers. The term standard model of arithmetic refers to the standard natural numbers 0, 1, 2, …. The elements of any model of Peano arithmetic are linearly ordered and possess an initial segment isomorphic to the standard natural numbers. A non-standard model is one that has additional elements outside this initial segment. The construction of such models is due to Thoralf Skolem (1934).
Non-standard models of arithmetic exist only for the first-order formulation of the Peano axioms; for the original second-order formulation, there is, up to isomorphism, only one model: the natural numbers themselves.[1]