In mathematics, the nu function is a generalization of the reciprocal gamma function of the Laplace transform .
Formally, it can be defined as
ν
(
x
)
≡
∫
0
∞
x
t
d
t
Γ
(
t
+
1
)
ν
(
x
,
α
)
≡
∫
0
∞
x
α
+
t
d
t
Γ
(
α
+
t
+
1
)
{\displaystyle {\begin{aligned}\nu (x)&\equiv \int _{0}^{\infty }{\frac {x^{t}\,dt}{\Gamma (t+1)}}\\[10pt]\nu (x,\alpha )&\equiv \int _{0}^{\infty }{\frac {x^{\alpha +t}\,dt}{\Gamma (\alpha +t+1)}}\end{aligned}}}
where
Γ
(
z
)
{\displaystyle \Gamma (z)}
is the Gamma function .[ 1] [ 2]
^ Erdélyi, A; Magnus, W; Tricomi, FG; Oberhettinger, F (1981). Higher Transcendental Functions, Vol. 3: The Function y( x) and Related Functions . pp. 217–224.
^ Gradshteyn, Izrail Solomonovich ; Ryzhik, Iosif Moiseevich ; Geronimus, Yuri Veniaminovich ; Tseytlin, Michail Yulyevich ; Jeffrey, Alan (2015) [October 2014]. Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products . Translated by Scripta Technica, Inc. (8th ed.). Academic Press, Inc. ISBN 978-0-12-384933-5 . LCCN 2014010276 .