Nuclear pasta

Cross-section of neutron star

In astrophysics and nuclear physics, nuclear pasta is a theoretical type of degenerate matter that is postulated to exist within the crusts of neutron stars. If it exists, nuclear pasta would be the strongest material in the universe.[1] Between the surface of a neutron star and the quark–gluon plasma at the core, at matter densities of 1014 g/cm3, nuclear attraction and Coulomb repulsion forces are of comparable magnitude. The competition between the forces leads to the formation of a variety of complex structures assembled from neutrons and protons. Astrophysicists call these types of structures nuclear pasta because the geometry of the structures resembles various types of pasta.[2][3]

  1. ^ Caplan, M. E.; Schneider, A. S.; Horowitz, C. J. (24 September 2018). "Elasticity of Nuclear Pasta". Physical Review Letters. 121 (13): 132701. arXiv:1807.02557. Bibcode:2018PhRvL.121m2701C. doi:10.1103/PhysRevLett.121.132701. PMID 30312063. S2CID 206317364. Retrieved 26 August 2021.
  2. ^ Pons, José A.; Viganò, Daniele; Rea, Nanda (2013). "Too much "pasta" for pulsars to spin down". Nature Physics. 9 (7): 431–434. arXiv:1304.6546. Bibcode:2013NatPh...9..431P. doi:10.1038/nphys2640. S2CID 119253979.
  3. ^ Reagan, David. "Visualizations of Nuclear Pasta". Advanced Visualization Lab, Research Technologies, Indiana University. Archived from the original on April 4, 2020. Retrieved 28 June 2013.