Nucleic acid structure prediction is a computational method to determine secondary and tertiary nucleic acid structure from its sequence. Secondary structure can be predicted from one or several nucleic acid sequences. Tertiary structure can be predicted from the sequence, or by comparative modeling (when the structure of a homologous sequence is known).
The problem of predicting nucleic acid secondary structure is dependent mainly on base pairing and base stacking interactions; many molecules have several possible three-dimensional structures, so predicting these structures remains out of reach unless obvious sequence and functional similarity to a known class of nucleic acid molecules, such as transfer RNA (tRNA) or microRNA (miRNA), is observed. Many secondary structure prediction methods rely on variations of dynamic programming and therefore are unable to efficiently identify pseudoknots.
While the methods are similar, there are slight differences in the approaches to RNA and DNA structure prediction. In vivo, DNA structures are more likely to be duplexes with full complementarity between two strands, while RNA structures are more likely to fold into complex secondary and tertiary structures such as in the ribosome, spliceosome, or transfer RNA. This is partly because the extra oxygen in RNA increases the propensity for hydrogen bonding in the nucleic acid backbone. The energy parameters are also different for the two nucleic acids. The structure prediction methods can follow a completely theoretical approach, or a hybrid one incorporating experimental data.[1][2]