In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex matrix A is the set
where denotes the conjugate transpose of the vector . The numerical range includes, in particular, the diagonal entries of the matrix (obtained by choosing x equal to the unit vectors along the coordinate axes) and the eigenvalues of the matrix (obtained by choosing x equal to the eigenvectors).
In engineering, numerical ranges are used as a rough estimate of eigenvalues of A. Recently, generalizations of the numerical range are used to study quantum computing.
A related concept is the numerical radius, which is the largest absolute value of the numbers in the numerical range, i.e.