O-linked glycosylation

O-linked glycosylation is the attachment of a sugar molecule to the oxygen atom of serine (Ser) or threonine (Thr) residues in a protein. O-glycosylation is a post-translational modification that occurs after the protein has been synthesised. In eukaryotes, it occurs in the endoplasmic reticulum, Golgi apparatus and occasionally in the cytoplasm; in prokaryotes, it occurs in the cytoplasm.[1] Several different sugars can be added to the serine or threonine, and they affect the protein in different ways by changing protein stability and regulating protein activity. O-glycans, which are the sugars added to the serine or threonine, have numerous functions throughout the body, including trafficking of cells in the immune system, allowing recognition of foreign material, controlling cell metabolism and providing cartilage and tendon flexibility.[2] Because of the many functions they have, changes in O-glycosylation are important in many diseases including cancer, diabetes and Alzheimer's. O-glycosylation occurs in all domains of life, including eukaryotes, archaea and a number of pathogenic bacteria including Burkholderia cenocepacia,[3] Neisseria gonorrhoeae[4] and Acinetobacter baumannii.[5]

  1. ^ Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998). "Concepts and principles of O-linked glycosylation". Critical Reviews in Biochemistry and Molecular Biology. 33 (3): 151–208. doi:10.1080/10409239891204198. PMID 9673446.
  2. ^ Hounsell EF, Davies MJ, Renouf DV (February 1996). "O-linked protein glycosylation structure and function". Glycoconjugate Journal. 13 (1): 19–26. doi:10.1007/bf01049675. PMID 8785483. S2CID 31369853.
  3. ^ Lithgow KV, Scott NE, Iwashkiw JA, Thomson EL, Foster LJ, Feldman MF, Dennis JJ (April 2014). "A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence". Molecular Microbiology. 92 (1): 116–37. doi:10.1111/mmi.12540. PMID 24673753. S2CID 25666819.
  4. ^ Vik A, Aas FE, Anonsen JH, Bilsborough S, Schneider A, Egge-Jacobsen W, Koomey M (March 2009). "Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae". Proceedings of the National Academy of Sciences of the United States of America. 106 (11): 4447–52. Bibcode:2009PNAS..106.4447V. doi:10.1073/pnas.0809504106. PMC 2648892. PMID 19251655.
  5. ^ Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, et al. (2012). "Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation". PLOS Pathogens. 8 (6): e1002758. doi:10.1371/journal.ppat.1002758. PMC 3369928. PMID 22685409.