Oblique subduction is a form of subduction (i.e. a tectonic process involving the convergence of two plates where the denser plate descends into Earth's interior)[2] for which the convergence direction differs from 90° to the plate boundary.[3] Most convergent boundaries involve oblique subduction,[3] particularly in the Ring of Fire including the Ryukyu, Aleutian, Central America and Chile subduction zones.[4] In general, the obliquity angle is between 15° and 30°.[5] Subduction zones with high obliquity angles include Sunda trench (ca. 60°) and Ryukyu arc (ca. 50°).[5]
Obliquity in plate convergence causes differences in dipping angle and subduction velocity along the plate boundary.[6][7] Tectonic processes including slab roll-back, trench retreat (i.e. a tectonic response to the process of slab roll-back that moves the trench seaward)[8] and slab fold (i.e. buckling of subducting slab due to phase transition)[9] may also occur.[6][7]
Moreover, collision of two plates leads to strike slip deformation of the forearc, thus forming a series of features including forearc slivers and strike slip fault systems that are sub-parallel to ocean trenches.[10] In addition, oblique subduction is associated with the closure of ancient ocean, tsunami and block rotations in several regions.[11][12][13]