Ohakuri Caldera

Ohakuri Caldera
Approximate location and outline (white) of Ohakuri Caldera. Known surrounding Ohakuri ignimbrite (yellow) is approximately as shown. The relationship to the inactive southern portion (red dots) and active northern portion (red line) of the Horohoro Fault may be important. The old Taupō Rift (light yellow shading), modern Taupō Rift (light red shading) and Hauraki Rift (light purple shading) are shown for context. Landmarks such as Lake Taupō, Lake Rotorua, Mount Tarawera are shown for orientation. Within the caldera the dome Ngautuku is identified.
Highest point
Elevation629 m (2,064 ft)
ProminenceNgautuku
Coordinates38°22′41″S 176°01′08″E / 38.378°S 176.019°E / -38.378; 176.019
Dimensions
Width5km
Geography
Ohakuri Caldera is located in North Island
Ohakuri Caldera
Ohakuri Caldera
CountryNew Zealand
RegionWaikato
Range coordinates38°21′53″S 176°02′05″E / 38.36472°S 176.03472°E / -38.36472; 176.03472
Geology
Rock agePleistocene (0.24 Ma)[1]
Mountain typeCaldera
Volcanic regionTaupō Volcanic Zone
Last eruption240,000 years ago
Climbing
AccessState Highway 1 (New Zealand)

The Ohakuri Caldera ( also Ōhakuri Caldera) was formed in a paired single event eruption of Ohakuri ignimbrite and is located in the Taupō Volcanic Zone on the North Island of New Zealand. Its significance was first recognised in 2004, as the geology of the area had been misunderstood until then. The paired eruption resulted in a very large eruption sequence in the Taupō Volcanic Zone about 240,000 years ago that included the formation of Lake Rotorua and eruption of the Mamaku ignimbrite.[2]

  1. ^ Bégué, F.; Deering, C. D.; Gravley, D. M.; Kennedy, B. M.; Chambefort, I.; Gualda, G. A. R.; Bachmann, O. (2014). "Extraction, Storage and Eruption of Multiple Isolated Magma Batches in the Paired Mamaku and Ohakuri Eruption, Taupo Volcanic Zone, New Zealand". Journal of Petrology. 55 (8): 1653–1684. doi:10.1093/petrology/egu038. hdl:20.500.11850/88102.
  2. ^ Gravley, Darren MClurg (2004). "The Ohakuri pyroclastic deposits and the evolution of the Rotorua-Ohakuri volcanotectonic depression" (PDF). Retrieved 2022-08-17.