OptiX

Nvidia OptiX
Developer(s)Nvidia
Stable release
8.0 / August 2023 (2023-08)
Written inC / C++
Operating systemLinux, OS X, Windows 7 and later
TypeRay tracing
LicenseProprietary software, free for commercial use
WebsiteNvidia OptiX developer site

Nvidia OptiX (OptiX Application Acceleration Engine) is a ray tracing API that was first developed around 2009.[1] The computations are offloaded to the GPUs through either the low-level or the high-level API introduced with CUDA. CUDA is only available for Nvidia's graphics products. Nvidia OptiX is part of Nvidia GameWorks. OptiX is a high-level, or "to-the-algorithm" API, meaning that it is designed to encapsulate the entire algorithm of which ray tracing is a part, not just the ray tracing itself. This is meant to allow the OptiX engine to execute the larger algorithm with great flexibility without application-side changes.

Commonly, video games use rasterization rather than ray tracing for their rendering.

According to Nvidia, OptiX is designed to be flexible enough for "procedural definitions and hybrid rendering approaches". Aside from computer graphics rendering, OptiX also helps in optical and acoustical design, radiation and electromagnetic research,[2] artificial intelligence queries and collision analysis.[3]

  1. ^ "Scheduling in OptiX, the Nvidia ray tracing engine" (PDF). August 15, 2009.
  2. ^ Felbecker, Robert; Raschkowski, Leszek; Keusgen, Wilhelm; Peter, Michael (2012). "Electromagnetic wave propagation in the millimeter wave band using the NVIDIA OptiX GPU ray tracing engine". 2012 6th European Conference on Antennas and Propagation (EUCAP). IEEE Xplore. pp. 488–492. doi:10.1109/EuCAP.2012.6206198. ISBN 978-1-4577-0920-3. S2CID 45563615.
  3. ^ Steven G. Parker; Heiko Friedrich; David Luebke; Keith Morley; James Bigler; Jared Hoberock; David McAllister; Austin Robison; Andreas Dietrich; Greg Humphreys; Morgan McGuire; Martin Stich (2013). "Magazine Communications of the ACM - GPU ray tracing". Communications of the ACM. 56 (5). ACM: 93–101. doi:10.1145/2447976.2447997. S2CID 17174671. Retrieved August 14, 2013.