Optical mapping[1] is a technique for constructing ordered, genome-wide, high-resolution restriction maps from single, stained molecules of DNA, called "optical maps". By mapping the location of restriction enzyme sites along the unknown DNA of an organism, the spectrum of resulting DNA fragments collectively serves as a unique "fingerprint" or "barcode" for that sequence. Originally developed by Dr. David C. Schwartz and his lab at NYU in the 1990s [2] this method has since been integral to the assembly process of many large-scale sequencing projects for both microbial and eukaryotic genomes. Later technologies use DNA melting,[3] DNA competitive binding[4] or enzymatic labelling[5][6] in order to create the optical mappings.
^Zhou, Shiguo; Jill Herscheleb; David C. Schwartz (2007). A Single Molecule System for Whole Genome Analysis. New high throughput technologies for DNA sequencing and genomics. Vol. 2. Elsevier. pp. 269–304.
^Schwartz, D. C., et al. "Ordered Restriction Maps of Saccharomyces Cerevisiae Chromosomes Constructed by Optical Mapping." Science 262.5130 (1993): 110–4.