Order-7 tetrahedral honeycomb | |
---|---|
Type | Hyperbolic regular honeycomb |
Schläfli symbols | {3,3,7} |
Coxeter diagrams | |
Cells | {3,3} |
Faces | {3} |
Edge figure | {7} |
Vertex figure | {3,7} |
Dual | {7,3,3} |
Coxeter group | [7,3,3] |
Properties | Regular |
In the geometry of hyperbolic 3-space, the order-7 tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,7}. It has seven tetrahedra {3,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an order-7 triangular tiling vertex arrangement.