In computer vision and image processing, Otsu's method, named after Nobuyuki Otsu (大津展之, Ōtsu Nobuyuki), is used to perform automatic image thresholding.[1] In the simplest form, the algorithm returns a single intensity threshold that separate pixels into two classes, foreground and background. This threshold is determined by minimizing intra-class intensity variance, or equivalently, by maximizing inter-class variance.[2] Otsu's method is a one-dimensional discrete analogue of Fisher's discriminant analysis, is related to Jenks optimization method, and is equivalent to a globally optimal k-means[3] performed on the intensity histogram. The extension to multi-level thresholding was described in the original paper,[2] and computationally efficient implementations have since been proposed.[4][5]