cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | CDKN2A | ||||||
Alt. symbols | CDKN2, MLM | ||||||
NCBI gene | 1029 | ||||||
HGNC | 1787 | ||||||
OMIM | 600160 | ||||||
RefSeq | NM_058195 | ||||||
UniProt | P42771 | ||||||
Other data | |||||||
Locus | Chr. 9 p21 | ||||||
|
p14ARF (also called ARF tumor suppressor, ARF, p14ARF) is an alternate reading frame protein product of the CDKN2A locus (i.e. INK4a/ARF locus).[1] p14ARF is induced in response to elevated mitogenic stimulation, such as aberrant growth signaling from MYC and Ras (protein).[2] It accumulates mainly in the nucleolus where it forms stable complexes with NPM or Mdm2. These interactions allow p14ARF to act as a tumor suppressor by inhibiting ribosome biogenesis or initiating p53-dependent cell cycle arrest and apoptosis, respectively.[3] p14ARF is an atypical protein, in terms of its transcription, its amino acid composition, and its degradation: it is transcribed in an alternate reading frame of a different protein, it is highly basic,[1] and it is polyubiquinated at the N-terminus.[4]
Both p16INK4a and p14ARF are involved in cell cycle regulation. p14ARF inhibits mdm2, thus promoting p53, which promotes p21 activation, which then binds and inactivates certain cyclin-CDK complexes, which would otherwise promote transcription of genes that would carry the cell through the G1/S checkpoint of the cell cycle. Loss of p14ARF by a homozygous mutation in the CDKN2A (INK4A) gene will lead to elevated levels in mdm2 and, therefore, loss of p53 function and cell cycle control.
The equivalent in mice is p19ARF.