PPAD (complexity)

In computer science, PPAD ("Polynomial Parity Arguments on Directed graphs") is a complexity class introduced by Christos Papadimitriou in 1994. PPAD is a subclass of TFNP based on functions that can be shown to be total by a parity argument.[1][2] The class attracted significant attention in the field of algorithmic game theory because it contains the problem of computing a Nash equilibrium: this problem was shown to be complete for PPAD by Daskalakis, Goldberg and Papadimitriou with at least 3 players and later extended by Chen and Deng to 2 players.[3][4]

  1. ^ Christos Papadimitriou (1994). "On the complexity of the parity argument and other inefficient proofs of existence" (PDF). Journal of Computer and System Sciences. 48 (3): 498–532. doi:10.1016/S0022-0000(05)80063-7. Archived from the original (PDF) on 2016-03-04. Retrieved 2008-03-08.
  2. ^ Fortnow, Lance (2005). "What is PPAD?". Retrieved 2007-01-29.
  3. ^ *Chen, Xi; Deng, Xiaotie (2006). Settling the complexity of two-player Nash equilibrium. Proc. 47th Symp. Foundations of Computer Science. pp. 261–271. doi:10.1109/FOCS.2006.69. ECCC TR05-140..
  4. ^ Daskalakis, Constantinos.; Goldberg, Paul W.; Papadimitriou, Christos H. (2009-01-01). "The Complexity of Computing a Nash Equilibrium". SIAM Journal on Computing. 39 (1): 195–259. CiteSeerX 10.1.1.152.7003. doi:10.1137/070699652. ISSN 0097-5397.