Paenibacillus

Paenibacillus
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Paenibacillus

Ash et al. 1994
Species

P. agarexedens
P. agaridevorans
P. alginolyticus
P. alkaliterrae
P. alvei
P. amylolyticus
P. anaericanus
P. antarcticus
P. apiarius
P. assamensis
P. azoreducens
P. azotofixans
P. barcinonensis
P. borealis
P. brasilensis
P. brassicae[1]
P. campinasensis
P. chinjuensis
P. chitinolyticus
P. chondroitinus
P. cineris
P. cookii
P. curdlanolyticus
P. daejeonensis
P. dendritiformis
P. durum
P. ehimensis
P. elgii
P. favisporus
P. glucanolyticus
P. glycanilyticus
P. gordonae
P. graminis
P. granivorans
P. hodogayensis
P. illinoisensis
P. jamilae
P. kobensis
P. koleovorans
P. koreensis
P. kribbensis
P. lactis
P. larvae
P. lautus
P. lentimorbus
P. macerans
P. macquariensis
P. massiliensis
P. mendelii
P. motobuensis
P. naphthalenovorans
P. nematophilus
P. odorifer
P. pabuli
P. peoriae
P. phoenicis
P. phyllosphaerae
P. polymyxa[2][3][4][5][6][7]
P. popilliae
P. pulvifaciens
P. rhizosphaerae
P. sanguinis
P. stellifer
Paenibacillus stellifer#1. Morphology: P. terrae
P. thiaminolyticus
P. timonensis
P. tundrae
P. turicensis
P. tylopili
P. validus
P. vortex
P. vulneris
P. wynnii
P. xylanilyticus

Paenibacillus is a genus of facultative anaerobic, endospore-forming bacteria, originally included within the genus Bacillus and then reclassified as a separate genus in 1993.[8] Bacteria belonging to this genus have been detected in a variety of environments, such as: soil, water, rhizosphere, vegetable matter, forage and insect larvae, as well as clinical samples.[9][10][11][12] The name reflects: Latin paene means almost, so the paenibacilli are literally "almost bacilli". The genus includes P. larvae, which causes American foulbrood in honeybees, P. polymyxa, which is capable of fixing nitrogen, so is used in agriculture and horticulture, the Paenibacillus sp. JDR-2 which is a rich source of chemical agents for biotechnology applications, and pattern-forming strains such as P. vortex and P. dendritiformis discovered in the early 90s,[13][14][15][16][17] which develop complex colonies with intricate architectures[18][19][20][21][22] as shown in the pictures:

  1. ^ Gao M, Yang H, Zhao J, Liu J, Sun YH, Wang YJ, Sun JG (March 2013). "Paenibacillus brassicae sp. nov., isolated from cabbage rhizosphere in Beijing, China". Antonie van Leeuwenhoek. 103 (3): 647–653. doi:10.1007/s10482-012-9849-1. PMID 23180372. S2CID 18884588.
  2. ^ Puri A, Padda KP, Chanway CP (October 2015). "Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth?". Soil Biology and Biochemistry. 89: 210–216. doi:10.1016/j.soilbio.2015.07.012.
  3. ^ Puri A, Padda KP, Chanway CP (January 2016). "Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R". Biology and Fertility of Soils. 52 (1): 119–125. doi:10.1007/s00374-015-1051-y. S2CID 15963708.
  4. ^ Puri A, Padda KP, Chanway CP (June 2016). "Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial". Symbiosis. 69 (2): 123–129. doi:10.1007/s13199-016-0385-z. S2CID 17870808.
  5. ^ Padda KP, Puri A, Chanway CP (April 2016). "Effect of GFP tagging of Paenibacillus polymyxa P2b-2R on its ability to promote growth of canola and tomato seedlings". Biology and Fertility of Soils. 52 (3): 377–387. doi:10.1007/s00374-015-1083-3. S2CID 18149924.
  6. ^ Padda KP, Puri A, Chanway CP (7 July 2016). "Plant growth promotion and nitrogen fixation in canola by an endophytic strain of Paenibacillus polymyxa and its GFP-tagged derivative in a long-term study". Botany. 94 (12): 1209–1217. doi:10.1139/cjb-2016-0075.
  7. ^ Yang H, Puri A, Padda KP, Chanway CP (June 2016). "Effects of Paenibacillus polymyxa inoculation and different soil nitrogen treatments on lodgepole pine seedling growth". Canadian Journal of Forest Research. 46 (6): 816–821. doi:10.1139/cjfr-2015-0456. hdl:1807/72264.
  8. ^ Ash C, Priest FG, Collins MD: Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993, 64:253-260.
  9. ^ Padda KP, Puri A, Chanway CP (2017). "Paenibacillus polymyxa: A Prominent Biofertilizer and Biocontrol Agent for Sustainable Agriculture". Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. pp. 165–191. doi:10.1007/978-981-10-5343-6_6. ISBN 9789811053429.
  10. ^ McSpadden Gardener BB (November 2004). "Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems". Phytopathology. 94 (11): 1252–1258. doi:10.1094/PHYTO.2004.94.11.1252. PMID 18944463.
  11. ^ Montes MJ, Mercadé E, Bozal N, Guinea J (September 2004). "Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment". International Journal of Systematic and Evolutionary Microbiology. 54 (Pt 5): 1521–1526. doi:10.1099/ijs.0.63078-0. PMID 15388704.
  12. ^ Ouyang J, Pei Z, Lutwick L, Dalal S, Yang L, Cassai N, et al. (2008). "Case report: Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis". Annals of Clinical and Laboratory Science. 38 (4): 393–400. PMC 2955490. PMID 18988935.
  13. ^ Ben-Jacob E, Cohen I (1997). "Cooperative formation of bacterial patterns.". In Shapiro JA, Dworkin M (eds.). Bacteria as Multicellular Organisms. New York: Oxford University Press. pp. 394–416.
  14. ^ Ben-Jacob E, Cohen I, Gutnick DL (1998). "Cooperative organization of bacterial colonies: from genotype to morphotype". Annual Review of Microbiology. 52: 779–806. doi:10.1146/annurev.micro.52.1.779. PMID 9891813.
  15. ^ Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirók A, Vicsek T (March 1994). "Generic modelling of cooperative growth patterns in bacterial colonies". Nature. 368 (6466): 46–9. Bibcode:1994Natur.368...46B. doi:10.1038/368046a0. PMID 8107881. S2CID 3054995.
  16. ^ Ben-Jacob E, Shmueli H, Shochet O, Tenenbaum A (September 1992). "Adaptive self-organization during growth of bacterial colonies". Physica A: Statistical Mechanics and Its Applications. 187 (3–4): 378–424. Bibcode:1992PhyA..187..378B. doi:10.1016/0378-4371(92)90002-8.
  17. ^ Ben-Jacob E, Shochet O, Tenenbaum A, Avidan O (1995). "Evolution of complexity during growth of bacterial colonies.". In Cladis PE, Palffy-Muhorey P (eds.). NATO Advanced Research Workshop; Santa Fe, USA. Addison-Wesley Publishing Company. pp. 619–633.
  18. ^ Ben-Jacob E (June 2003). "Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment". Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences. 361 (1807): 1283–312. Bibcode:2003RSPTA.361.1283B. doi:10.1098/rsta.2003.1199. PMID 12816612. S2CID 5213232.
  19. ^ Ben-Jacob E, Cohen I, Golding I, Gutnick DL, Tcherpakov M, Helbing D, Ron IG (July 2000). "Bacterial cooperative organization under antibiotic stress". Physica A: Statistical Mechanics and Its Applications. 282 (1–2): 247–82. Bibcode:2000PhyA..282..247B. doi:10.1016/S0378-4371(00)00093-5.
  20. ^ Ben-Jacob E, Cohen I, Levine H (June 2000). "Cooperative self-organization of microorganisms". Advances in Physics. 49 (4): 395–554. Bibcode:2000AdPhy..49..395B. doi:10.1080/000187300405228. S2CID 121881941.
  21. ^ Ben-Jacob E, Levine H (February 2006). "Self-engineering capabilities of bacteria". Journal of the Royal Society, Interface. 3 (6): 197–214. doi:10.1098/rsif.2005.0089. PMC 1618491. PMID 16849231.
  22. ^ Ingham CJ, Ben Jacob E (February 2008). "Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells". BMC Microbiology. 8: 36. doi:10.1186/1471-2180-8-36. PMC 2268691. PMID 18298829.