Pedal triangle

  Triangle ABC
  Perpendiculars from point P
  Obtained pedal triangle LMN

In plane geometry, a pedal triangle is obtained by projecting a point onto the sides of a triangle.

More specifically, consider a triangle ABC, and a point P that is not one of the vertices A, B, C. Drop perpendiculars from P to the three sides of the triangle (these may need to be produced, i.e., extended). Label L, M, N the intersections of the lines from P with the sides BC, AC, AB. The pedal triangle is then LMN.

If ABC is not an obtuse triangle and P is the orthocenter, then the angles of LMN are 180° − 2A, 180° − 2B and 180° − 2C.[1]

The location of the chosen point P relative to the chosen triangle ABC gives rise to some special cases:

Special case: P is on the circumcircle.
  Triangle ABC
  Circumcircle of ABC
  Perpendiculars from P
  Obtained pedal line LMN

The vertices of the pedal triangle of an interior point P, as shown in the top diagram, divide the sides of the original triangle in such a way as to satisfy Carnot's theorem:[2]

  1. ^ "Trigonometry/Circles and Triangles/The Pedal Triangle - Wikibooks, open books for an open world". en.wikibooks.org. Retrieved 2020-10-31.
  2. ^ Alfred S. Posamentier; Charles T. Salkind (1996). Challenging problems in geometry. New York: Dover. pp. 85-86. ISBN 9780486134864. OCLC 829151719.