A persistence module is a mathematical structure in persistent homology and topological data analysis that formally captures the persistence of topological features of an object across a range of scale parameters. A persistence module often consists of a collection of homology groups (or vector spaces if using field coefficients) corresponding to a filtration of topological spaces, and a collection of linear maps induced by the inclusions of the filtration. The concept of a persistence module was first introduced in 2005 as an application of graded modules over polynomial rings, thus importing well-developed algebraic ideas from classical commutative algebra theory to the setting of persistent homology.[1] Since then, persistence modules have been one of the primary algebraic structures studied in the field of applied topology.[2][3][4][5][6][7]
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: others (link)
{{cite book}}
: CS1 maint: location missing publisher (link)
{{cite book}}
: CS1 maint: location missing publisher (link)
{{cite book}}
: CS1 maint: location missing publisher (link)
{{cite book}}
: CS1 maint: location missing publisher (link)