A Peter Pan disk is a circumstellar disk around a star or brown dwarf that appears to have retained enough gas to form a gas giant planet for much longer than the typically assumed gas dispersal timescale of approximately 5 million years. Several examples of such disks have been observed to orbit stars with spectral types of M or later. The presence of gas around these disks has generally been inferred from the total amount of radiation emitted from the disk at infrared wavelengths, and/or spectroscopic signatures of hydrogen accreting onto the star. To fit one specific definition of a Peter Pan disk, the source needs to have an infrared "color" of , an age of >20 Myr and spectroscopic evidence of accretion.[1][2]
In 2016 volunteers of the Disk Detective project discovered WISE J080822.18-644357.3 (or J0808). This low-mass star showed signs of youth, for example a strong infrared excess and active accretion of gaseous material. It is part of the 45+11
−7 Myr old Carina young moving group, older than expected for these characteristics of an M-dwarf.[3][4] Other stars and brown dwarfs were discovered to be similar to J0808, with signs of youth while being in an older moving group.[4][2] Together with J0808, these older low-mass accretors in nearby moving groups have been called Peter Pan disks in one scientific paper published in early 2020.[5][2] Since then the term was used by other independent research groups.[6][7][8]
Disk Detective blog
was invoked but never defined (see the help page).Silverberg2020
was invoked but never defined (see the help page).Silverberg
was invoked but never defined (see the help page).Murphy2018
was invoked but never defined (see the help page).Coleman2020
was invoked but never defined (see the help page).Eriksson2020
was invoked but never defined (see the help page).Dai2020
was invoked but never defined (see the help page).