Phonon

A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle in physics,[1] a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves.[2]

The study of phonons is an important part of condensed matter physics. They play a major role in many of the physical properties of condensed matter systems, such as thermal conductivity and electrical conductivity, as well as in models of neutron scattering and related effects.

The concept of phonons was introduced in 1930 by Soviet physicist Igor Tamm. The name phonon was suggested by Yakov Frenkel.[3] It comes from the Greek word φωνή (phonē), which translates to sound or voice, because long-wavelength phonons give rise to sound. The name emphasizes the analogy to the word photon, in that phonons represent wave-particle duality for sound waves in the same way that photons represent wave-particle duality for light waves. Solids with more than one atom in the smallest unit cell exhibit both acoustic and optical phonons.

  1. ^ Schwabl, Franz (2008). Advanced Quantum Mechanics (4th ed.). Springer. p. 253. ISBN 978-3-540-85062-5.
  2. ^ Girvin, Steven M.; Yang, Kun (2019). Modern Condensed Matter Physics. Cambridge University Press. pp. 78–96. ISBN 978-1-107-13739-4.
  3. ^ Kozhevnikov, A. B. (2004). Stalin's great science : the times and adventures of Soviet physicists. London: Imperial College Press. pp. 64–69. ISBN 978-1-86094-419-2.{{cite book}}: CS1 maint: date and year (link)