Phosphate

Phosphate
Stereo skeletal formula of phosphate
Aromatic ball and stick model of phosphate
Aromatic ball and stick model of phosphate
Space-filling model of phosphate
Space-filling model of phosphate
Names
IUPAC name
Phosphate[1]
Other names
Orthophosphate
Tetraoxophosphate(V)
Tetraoxidophosphate(V)
Identifiers
3D model (JSmol)
3903772
ChEBI
ChemSpider
1997
MeSH Phosphates
UNII
  • InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 checkY
    Key: NBIIXXVUZAFLBC-UHFFFAOYSA-K checkY
  • hypervalent form: [O-]P([O-])([O-])=O
  • ionic form: [O-][P+]([O-])([O-])[O-]
Properties
PO3−
4
Molar mass 94.9714 g mol−1
Conjugate acid Monohydrogen phosphate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid, a.k.a. phosphoric acid H3PO4.

The phosphate or orthophosphate ion [PO
4
]3−
is derived from phosphoric acid by the removal of three protons H+
. Removal of one proton gives the dihydrogen phosphate ion [H
2
PO
4
]
while removal of two protons gives the hydrogen phosphate ion [HPO
4
]2−
. These names are also used for salts of those anions, such as ammonium dihydrogen phosphate and trisodium phosphate.

In organic chemistry, phosphate or orthophosphate is an organophosphate, an ester of orthophosphoric acid of the form PO
4
RR′R″
where one or more hydrogen atoms are replaced by organic groups. An example is trimethyl phosphate, (CH
3
)
3
PO
4
. The term also refers to the trivalent functional group OP(O-)
3
in such esters. Phosphates may contain sulfur in place of one or more oxygen atoms (thiophosphates and organothiophosphates).

Orthophosphates are especially important among the various phosphates because of their key roles in biochemistry, biogeochemistry, and ecology, and their economic importance for agriculture and industry.[2] The addition and removal of phosphate groups (phosphorylation and dephosphorylation) are key steps in cell metabolism.

Orthophosphates can condense to form pyrophosphates.

  1. ^ "Phosphates – PubChem Public Chemical Database". The PubChem Project. USA: National Center of Biotechnology Information.
  2. ^ "Phosphate Primer". Florida Industrial and Phosphate Research Institute. Florida Polytechnic University. Archived from the original on 29 August 2017. Retrieved 30 March 2018.