Since the development of the first quantum computer in 1998, most technologies used to implement qubits face issues of stability, decoherence,[6][7]fault tolerance[8][9] and scalability.[6][9][10] Because of this, many physical qubits are needed for the purposes of error-correction to produce an entity which behaves logically as a single qubit would in a quantum circuit or algorithm; this is the subject of quantum error correction.[3][11] Thus, contemporary logical qubits typically consist of many physical qubits to provide stability, error-correction and fault tolerance needed to perform useful computations.[1][7][11]
In 2023, Google researchers showed how quantum error correction can improve logical qubit performance by increasing the physical qubit count.[12] These results found that a larger logical qubit (49 physical qubits) had a lower error rate, about 2.9 percent per round of error correction, compared to a rate of about 3.0 percent for the smaller logical qubit (17 physical qubits).[13]
In 2024, IBM researchers created a quantum error correction code 10 times more efficient than previous research, protecting 12 logical qubits for roughly a million cycles of error checks using 288 qubits.[14][15] The work demonstrates error correction on near-term devices while reducing overhead – the number of physical qubits required to keep errors low.[16]
In 2024, Microsoft and Quantinuum announced experimental results that showed logical qubits could be created with significantly fewer physical qubits.[17] The team used quantum error correction techniques developed by Microsoft and Quantinuum’s trapped ion hardware to use 30 physical qubits to form four logical qubits. Scientists used a qubit virtualization system and active syndrome extraction—also called repeated error correction to accomplish this.[18] This work defines how to achieve logical qubits within quantum computation.[19]