Physical vapor deposition

Inside the plasma-spray physical vapor deposition (PS-PVD) chamber, ceramic powder is introduced into the plasma flame, which vaporizes it and then condenses it on the (cooler) workpiece to form the ceramic coating.
PVD process flow diagram

Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a vapor phase and then back to a thin film condensed phase. The most common PVD processes are sputtering and evaporation. PVD is used in the manufacturing of items which require thin films for optical, mechanical, electrical, acoustic or chemical functions. Examples include semiconductor devices such as thin-film solar cells,[1] microelectromechanical devices such as thin film bulk acoustic resonator, aluminized PET film for food packaging and balloons,[2] and titanium nitride coated cutting tools for metalworking. Besides PVD tools for fabrication, special smaller tools used mainly for scientific purposes have been developed.[3]

The source material is unavoidably also deposited on most other surfaces interior to the vacuum chamber, including the fixturing used to hold the parts. This is called overshoot.

  1. ^ Selvakumar, N.; Barshilia, Harish C. (1 March 2012). "Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications" (PDF). Solar Energy Materials and Solar Cells. 98: 1–23. doi:10.1016/j.solmat.2011.10.028.
  2. ^ Hanlon, Joseph F.; Kelsey, Robert J.; Forcinio, Hallie (23 April 1998). "Chapter 4 Coatings and Laminations". Handbook of Package Engineering 3rd Edition. CRC Press. ISBN 978-1566763066.
  3. ^ Fortunato, E.; Barquinha, P.; Martins, R. (12 June 2012). "Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances". Advanced Materials. 24 (22): 2945–2986. doi:10.1002/adma.201103228. ISSN 1521-4095. PMID 22573414. S2CID 205242464.