Plant defensin

Plant defensin
The plant defensin NaD1 with alpha helix in red, beta strands in blue, disulphide bonds in yellow (PDB: 1mr4​)
Identifiers
SymbolPlant defensin
PfamPF00304
Pfam clanCL0054
InterProIPR008176
PROSITEPDOC00725
SCOP21gps / SCOPe / SUPFAM
OPM superfamily58
OPM protein1jkz
CDDcd00107
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Plant defensin
The plant defensin NaD1 with alpha helix in red, beta strands in blue, disulphide bonds in yellow (PDB: 1mr4​)
Identifiers
SymbolPlant defensin
PfamPF00304
Pfam clanCL0054
InterProIPR008176
PROSITEPDOC00725
SCOP21gps / SCOPe / SUPFAM
OPM superfamily58
OPM protein1jkz
CDDcd00107
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Plant defensins (formerly gamma-thionins) are a family of primitive, highly stable, cysteine-rich defensins found in plants that function to defend them against pathogens and parasites.[1] Defensins are integral components of the innate immune system and belong to the ancient superfamily of antimicrobial peptides (AMPs). AMPs are also known as host defense peptides (HDPs),[2] and they are thought to have diverged about 1.4 billion years ago before the evolution of prokaryotes and eukaryotes.[3][4] They are ubiquitous in almost all plant species, functionally diverse, and their primary structure varies significantly from one species to the next, except for a few cysteine residues, which stabilize the protein structure through disulfide bond formation.[1] Plant defensins usually have a net positive charge due to the abundance of cationic amino acids[5] and are generally divided into two classes. Those in the class II category contain a C-terminal pro-peptide domain of approximately 33 amino acids[5] and are targeted to the vacuole,[6] while the class I defensins lack this domain and mature in the cell wall. Unlike their class I counterparts, class II plant defensins are relatively smaller, and their acidic C-terminal prodomain is hypothesized to contribute to their vacuolar targeting.[7] The first plant defensins were discovered in barley and wheat in 1990 and were initially designated as γ-thionins.[8][9] In 1995, the name was changed to 'plant defensin' when it was identified that they are evolutionarily unrelated to other thionins and were more similar to defensins from insects and mammals.[10][11]

  1. ^ a b Parisi K, Shafee TM, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA (April 2019). "The evolution, function and mechanisms of action for plant defensins". Seminars in Cell & Developmental Biology. 88: 107–118. doi:10.1016/j.semcdb.2018.02.004. PMID 29432955. S2CID 3543741.
  2. ^ Sathoff AE, Samac DA (May 2019). "Antibacterial Activity of Plant Defensins". Molecular Plant-Microbe Interactions. 32 (5): 507–514. doi:10.1094/mpmi-08-18-0229-cr. PMID 30501455. S2CID 205343360.
  3. ^ Carvalho A, Gomes VM (December 2011). "Plant defensins and defensin-like peptides - biological activities and biotechnological applications". Current Pharmaceutical Design. 17 (38): 4270–4293. doi:10.2174/138161211798999447. PMID 22204427.
  4. ^ Javaux EJ, Knoll AH, Walter MR (July 2001). "Morphological and ecological complexity in early eukaryotic ecosystems". Nature. 412 (6842): 66–69. doi:10.1038/35083562. PMID 11452306. S2CID 205018792.
  5. ^ a b Tavares LS, Santos M, Viccini LF, Moreira JS, Miller RN, Franco OL (October 2008). "Biotechnological potential of antimicrobial peptides from flowers". Peptides. 29 (10): 1842–1851. doi:10.1016/j.peptides.2008.06.003. PMID 18602431. S2CID 25750244.
  6. ^ Lay FT, Poon S, McKenna JA, Connelly AA, Barbeta BL, McGinness BS, et al. (February 2014). "The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions". BMC Plant Biology. 14 (1): 41. doi:10.1186/1471-2229-14-41. PMC 3922462. PMID 24495600.
  7. ^ Azmi S, Hussain MK (2021-01-14). "Analysis of structures, functions, and transgenicity of phytopeptides defensin and thionin: a review". Beni-Suef University Journal of Basic and Applied Sciences. 10 (1). doi:10.1186/s43088-020-00093-5. ISSN 2314-8543.
  8. ^ Mendez E, Moreno A, Colilla F, Pelaez F, Limas GG, Mendez R, et al. (December 1990). "Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm". European Journal of Biochemistry. 194 (2): 533–539. doi:10.1111/j.1432-1033.1990.tb15649.x. PMID 2176600.
  9. ^ Colilla FJ, Rocher A, Mendez E (September 1990). "gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm". FEBS Letters. 270 (1–2): 191–194. doi:10.1016/0014-5793(90)81265-p. PMID 2226781. S2CID 9260786.
  10. ^ Broekaert WF, Terras FR, Cammue BP, Osborn RW (August 1995). "Plant defensins: novel antimicrobial peptides as components of the host defense system". Plant Physiology. 108 (4): 1353–1358. doi:10.1104/pp.108.4.1353. PMC 157512. PMID 7659744.
  11. ^ Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, et al. (May 1995). "Small cysteine-rich antifungal proteins from radish: their role in host defense". The Plant Cell. 7 (5): 573–588. doi:10.1105/tpc.7.5.573. PMC 160805. PMID 7780308.