Plant lipid transfer proteins

Plant lipid transfer protein / bifunctional inhibitor / seed storage protein, 4-helical domain
Oryza sativa Lipid Transfer Protein 1 bound to palmitic acid (black). Positive charge in blue; negative charge in red (PDB: 1UVB​).
Identifiers
SymbolLTP/seed_store/tryp_amyl_inhib
PfamPF00234
Pfam clanCL0482
InterProIPR016140
SMARTSM00499
CATH1UVB
SCOP21UVB / SCOPe / SUPFAM
CDDcd00010
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDBPDB: 1UVBPDB: 1afhPDB: 1b1uPDB: 1be2PDB: 1beaPDB: 1bfaPDB: 1bipPDB: 1bwoPDB: 1cz2PDB: 1fk0PDB: 1fk1
Also Pfam PF13016, PF14368; see the Pfam clan relationships.

Plant lipid transfer proteins, also known as plant LTPs or PLTPs, are a group of highly-conserved proteins of about 7-9kDa found in higher plant tissues.[1][2] As its name implies, lipid transfer proteins facilitate the shuttling of phospholipids and other fatty acid groups between cell membranes.[3] LTPs are divided into two structurally related subfamilies according to their molecular masses: LTP1s (9 kDa) and LTP2s (7 kDa).[4] Various LTPs bind a wide range of ligands, including fatty acids with a C10–C18 chain length, acyl derivatives of coenzyme A, phospho- and galactolipids, prostaglandin B2, sterols, molecules of organic solvents, and some drugs.[2]

The LTP domain is also found in seed storage proteins (including 2S albumin, gliadin, and glutelin) and bifunctional trypsin/alpha-amylase inhibitors.[5][6][7][8] These proteins share the same superhelical, disulfide-stabilised four-helix bundle containing an internal cavity.

There is no sequence similarity between animal and plant LTPs. In animals, cholesteryl ester transfer protein, also called plasma lipid transfer protein, is a plasma protein that facilitates the transport of cholesteryl esters and triglycerides between the lipoproteins.

  1. ^ Asero R, Mistrello G, Roncarolo D, de Vries SC, Gautier MF, Ciurana CL, Verbeek E, Mohammadi T, Knul-Brettlova V, Akkerdaas JH, Bulder I, Aalberse RC, van Ree R (2001). "Lipid transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion". International Archives of Allergy and Immunology. 124 (1–3): 67–9. doi:10.1159/000053671. PMID 11306929. S2CID 40934840.
  2. ^ a b Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV (2016). "Lipid Transfer Proteins As Components of the Plant Innate Immune System: Structure, Functions, and Applications". Acta Naturae. 8 (2): 47–61. doi:10.32607/20758251-2016-8-2-47-61. PMC 4947988. PMID 27437139.
  3. ^ Kader JC (June 1996). "Lipid-Transfer Protein in Plants". Annual Review of Plant Physiology and Plant Molecular Biology. 47: 627–654. doi:10.1146/annurev.arplant.47.1.627. PMID 15012303.
  4. ^ Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV (2017-07-04). "Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens". Current Medicinal Chemistry. 24 (17): 1772–1787. doi:10.2174/0929867323666161026154111. PMID 27784212.
  5. ^ Lin KF, Liu YN, Hsu ST, Samuel D, Cheng CS, Bonvin AM, Lyu PC (April 2005). "Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean". Biochemistry. 44 (15): 5703–12. doi:10.1021/bi047608v. hdl:1874/385163. PMID 15823028.
  6. ^ Pantoja-Uceda D, Bruix M, Giménez-Gallego G, Rico M, Santoro J (December 2003). "Solution structure of RicC3, a 2S albumin storage protein from Ricinus communis". Biochemistry. 42 (47): 13839–47. doi:10.1021/bi0352217. PMID 14636051.
  7. ^ Oda Y, Matsunaga T, Fukuyama K, Miyazaki T, Morimoto T (November 1997). "Tertiary and quaternary structures of 0.19 alpha-amylase inhibitor from wheat kernel determined by X-ray analysis at 2.06 A resolution". Biochemistry. 36 (44): 13503–11. doi:10.1021/bi971307m. PMID 9354618.
  8. ^ Gourinath S, Alam N, Srinivasan A, Betzel C, Singh TP (March 2000). "Structure of the bifunctional inhibitor of trypsin and alpha-amylase from ragi seeds at 2.2 A resolution". Acta Crystallographica D. 56 (Pt 3): 287–93. doi:10.1107/s0907444999016601. PMID 10713515.