Platelet-derived growth factor | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | PDGF | ||||||||
Pfam | PF00341 | ||||||||
InterPro | IPR000072 | ||||||||
PROSITE | PDOC00222 | ||||||||
SCOP2 | 1pdg / SCOPe / SUPFAM | ||||||||
|
Platelet-derived growth factor (PDGF) is one among numerous growth factors that regulate cell growth and division. In particular, PDGF plays a significant role in blood vessel formation, the growth of blood vessels from already-existing blood vessel tissue, mitogenesis, i.e. proliferation, of mesenchymal cells such as fibroblasts, osteoblasts, tenocytes, vascular smooth muscle cells and mesenchymal stem cells as well as chemotaxis, the directed migration, of mesenchymal cells. Platelet-derived growth factor is a dimeric glycoprotein that can be composed of two A subunits (PDGF-AA), two B subunits (PDGF-BB), or one of each (PDGF-AB).
PDGF[1][2] is a potent mitogen for cells of mesenchymal origin, including fibroblasts, smooth muscle cells and glial cells. In both mouse and human, the PDGF signalling network consists of five ligands, PDGF-AA through -DD (including -AB), and two receptors, PDGFRalpha and PDGFRbeta. All PDGFs function as secreted, disulphide-linked homodimers, but only PDGFA and B can form functional heterodimers.
Though PDGF is synthesized,[3] stored (in the alpha granules of platelets),[4] and released by platelets upon activation, it is also produced by other cells including smooth muscle cells, activated macrophages, and endothelial cells[5]
Recombinant PDGF is used in medicine to help heal chronic ulcers, to heal ocular surface diseases and in orthopedic surgery and periodontics as an alternative to bone autograft to stimulate bone regeneration and repair.