Platonic hydrocarbon

A comparison between the five platonic solids and the corresponding three platonic hydrocarbons

In organic chemistry, a Platonic hydrocarbon is a hydrocarbon whose structure matches one of the five Platonic solids, with carbon atoms replacing its vertices, carbon–carbon bonds replacing its edges, and hydrogen atoms as needed.[1][page needed]

Not all Platonic solids have molecular hydrocarbon counterparts; those that do are the tetrahedron (tetrahedrane), the cube (cubane), and the dodecahedron (dodecahedrane). The possibility and existence of each platonic hydrocarbon is affected by the number of bonds to each carbon vertex and the angle strain between the bonds at each vertex.

  1. ^ Henning Hopf, Classics in Hydrocarbon Chemistry, Wiley VCH, 2000.[full citation needed]