In queueing theory, a discipline within the mathematical theory of probability, a polling system or polling model is a system where a single server visits a set of queues in some order.[1] The model has applications in computer networks and telecommunications,[2]manufacturing[3][4] and road traffic management. The term polling system was coined at least as early as 1968[5][6] and the earliest study of such a system in 1957 where a single repairman servicing machines in the British cotton industry was modelled.[7]
Typically it is assumed that the server visits the different queues in a cyclic manner.[1] Exact results exist for waiting times, marginal queue lengths and joint queue lengths[8] at polling epochs in certain models.[9]Mean value analysis techniques can be applied to compute average quantities.[10]
In a fluid limit, where a very large number of small jobs arrive the individual nodes can be viewed to behave similarly to fluid queues (with a two state process).[11]