Names | |
---|---|
IUPAC name
poly(1-acrylonitrile)
| |
Other names
Polyvinyl cyanide[1]
Creslan 61 | |
Properties | |
(C3H3N)n | |
Molar mass | 53.0626 ± 0.0028 g/mol C 67.91%, H 5.7%, N 26.4% |
Appearance | White solid |
Density | 1.184 g/cm3 |
Melting point | 300 °C (572 °F; 573 K) |
Boiling point | Degrades |
Insoluble | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Polyacrylonitrile (PAN) is a synthetic, semicrystalline organic polymer resin, with the linear formula (CH2CHCN)n.[2] Almost all PAN resins are copolymers with acrylonitrile as the main monomer. PAN is used to produce large variety of products including ultra filtration membranes, hollow fibers for reverse osmosis, fibers for textiles, and oxidized PAN fibers. PAN fibers are the chemical precursor of very high-quality carbon fiber. PAN is first thermally oxidized in air at 230 °C to form an oxidized PAN fiber and then carbonized above 1000 °C in inert atmosphere to make carbon fibers found in a variety of both high-tech and common daily applications such as civil and military aircraft primary and secondary structures, missiles, solid propellant rocket motors, pressure vessels, fishing rods, tennis rackets and bicycle frames. It is a component repeat unit in several important copolymers, such as styrene-acrylonitrile (SAN) and acrylonitrile butadiene styrene (ABS) plastic.