Names | |
---|---|
IUPAC name
Polyethene or poly(methylene)[1]
| |
Other names
Polyethylene
Polythene | |
Identifiers | |
Abbreviations | PE |
ChemSpider |
|
ECHA InfoCard | 100.121.698 |
KEGG | |
MeSH | Polyethylene |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
Properties | |
(C2H4)n | |
Density | 0.88–0.96 g/cm3[2] |
Melting point | 115–135 °C (239–275 °F; 388–408 K)[2] |
Not soluble | |
log P | 1.02620[3] |
−9.67×10−6 (HDPE, SI, 22 °C)[4] | |
Thermochemistry | |
Std enthalpy of
formation (ΔfH⦵298) |
−28 to −29 kJ/mole[5] |
650-651 kJ/mole, 46 MJ/kg[5] | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Part of a series on |
Fiber |
---|
Natural fibers |
Human-made fibers |
Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic.[7] It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bottles, cups, jars, etc.). As of 2017[update], over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market.[8][9]
Many kinds of polyethylene are known, with most having the chemical formula (C2H4)n. PE is usually a mixture of similar polymers of ethylene, with various values of n. It can be low-density or high-density and many variations thereof. Its properties can be modified further by crosslinking or copolymerization. All forms are nontoxic as well as chemically resilient, contributing to polyethylene's popularity as a multi-use plastic. However, polyethylene's chemical resilience also makes it a long-lived and decomposition-resistant pollutant when disposed of improperly.[10] Being a hydrocarbon, polyethylene is colorless to opaque (without impurities or colorants) and combustible.[11]
Ullmann
was invoked but never defined (see the help page).