Polynomial decomposition

In mathematics, a polynomial decomposition expresses a polynomial f as the functional composition of polynomials g and h, where g and h have degree greater than 1; it is an algebraic functional decomposition. Algorithms are known for decomposing univariate polynomials in polynomial time.

Polynomials which are decomposable in this way are composite polynomials; those which are not are indecomposable polynomials or sometimes prime polynomials[1] (not to be confused with irreducible polynomials, which cannot be factored into products of polynomials). The degree of a composite polynomial is always a composite number, the product of the degrees of the composed polynomials.

The rest of this article discusses only univariate polynomials; algorithms also exist for multivariate polynomials of arbitrary degree.[2]

  1. ^ J.F. Ritt, "Prime and Composite Polynomials", Transactions of the American Mathematical Society 23:1:51–66 (January, 1922) doi:10.2307/1988911 JSTOR 1988911
  2. ^ Jean-Charles Faugère, Ludovic Perret, "An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography", Journal of Symbolic Computation, 44:1676-1689 (2009), doi:10.1016/j.jsc.2008.02.005