This page or section uses colour as the only way to convey important information. (March 2021) |
There are several families of symmetric polytopes with irreducible symmetry which have a member in more than one dimensionality. These are tabulated here with Petrie polygon projection graphs and Coxeter–Dynkin diagrams.
Table of irreducible polytope families | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Family n |
n-simplex | n-hypercube | n-orthoplex | n-demicube | 1k2 | 2k1 | k21 | pentagonal polytope | ||||||||
Group | An | Bn |
|
|
Hn | |||||||||||
2 | p-gon (example: p=7) |
Hexagon |
Pentagon | |||||||||||||
3 | Tetrahedron |
Cube |
Octahedron |
Tetrahedron |
Dodecahedron |
Icosahedron | ||||||||||
4 | 5-cell |
16-cell |
24-cell |
120-cell |
600-cell | |||||||||||
5 | 5-simplex |
5-cube |
5-orthoplex |
5-demicube |
||||||||||||
6 | 6-simplex |
6-cube |
6-orthoplex |
6-demicube |
122 |
221 |
||||||||||
7 | 7-simplex |
7-cube |
7-orthoplex |
7-demicube |
132 |
231 |
321 |
|||||||||
8 | 8-simplex |
8-cube |
8-orthoplex |
8-demicube |
142 |
241 |
421 |
|||||||||
9 | 9-simplex |
9-cube |
9-orthoplex |
9-demicube |
||||||||||||
10 | 10-simplex |
10-cube |
10-orthoplex |
10-demicube |