Electronic devices have hugely influenced the development of many aspects of modern society, such as telecommunications, entertainment, education, health care, industry, and security. The main driving force behind the advancement of electronics is the semiconductor industry, which in response to global demand continually produces ever-more sophisticated electronic devices and circuits. The semiconductor industry is one of the largest and most profitable sectors in the global economy, with annual revenues exceeding $481 billion in 2018. The electronics industry also encompasses other sectors that rely on electronic devices and systems, such as e-commerce, which generated over $29 trillion in online sales in 2017. (Full article...)
These are Good articles, which meet a core set of high editorial standards.
Image 1
The Yamaha NS-10 is a loudspeaker that became a standard nearfield studio monitor in the music industry among rock and pop recording engineers. Launched in 1978, the NS-10 started life as a bookshelf speaker destined for the domestic environment. It was poorly received but eventually became a valuable tool with which to mix rock recordings. The speaker has a characteristic white-coloured mid–bass drive unit.
Technically, it is known as a speaker that easily reveals poor quality in recordings. Recording engineers sought to dull its treble response by hanging tissue paper in front of it, resulting in what became known as the "tissue paper effect" – a type of comb filtering. The NS-10 has been used to monitor a large number of successful recordings by numerous artists, leading Gizmodo to refer to it as "the most important loudspeaker you never heard of". (Full article...)
Image 2
The Leslie speaker is a combined amplifier and loudspeaker that projects the signal from an electric or electronic instrument and modifies the sound by rotating a baffle chamber ("drum") in front of the loudspeakers. A similar effect is provided by a rotating system of horns in front of the treble driver. It is most commonly associated with the Hammond organ, though it was later used for the electric guitar and other instruments. A typical Leslie speaker contains an amplifier, a treble horn and a bass speaker—though specific components depend upon the model. A musician controls the Leslie speaker by either an external switch or pedal that alternates between a slow and fast speed setting, known as "chorale" and "tremolo".
The speaker is named after its inventor, Donald Leslie, who began working in the late 1930s to get a speaker for a Hammond organ that better emulated a pipe or theatre organ, and discovered that baffles rotating along the axis of the speaker cone gave the best sound effect. Hammond was not interested in marketing or selling the speakers, so Leslie sold them himself as an add-on, targeting other organs as well as Hammond. Leslie made the first speaker in 1941. The sound of the organ being played through his speaker received national radio exposure across the US, and it became a commercial and critical success. It soon became an essential tool for most jazz organists. In 1965, Leslie sold his business to CBS who, in 1980, sold it to Hammond. Suzuki Musical Instrument Corporation subsequently acquired the Hammond and Leslie brands. (Full article...)
Image 3
The Naim NAIT (acronym for "Naim Audio Integrated amplifier") is an integrated amplifier from the British hi-fi manufacturer, Naim Audio. The original NAIT is one of the most recognisable pieces of hi-fi equipment ever made. Hi-fi critic Lucio Cadeddu recognised its legendary status, referring to it as "one of the most controversial and famous integrated amps in the history of HiFi".
Having already made their name producing solid-state pre-amplifier and power-amplifier separates, Naim launched a low-powered integrated amplifier that embodies the qualities of its amplifiers, aimed at cost-conscious audiophiles. (Full article...)
The project began with two aims: to prove the practicality of the Williams tube, an early form of computer memory based on standard cathode-ray tubes (CRTs); and to construct a machine that could be used to investigate how computers might be able to assist in the solution of mathematical problems. The first of the series, the Manchester Baby, ran its first program on 21 June 1948. As the world's first stored-program computer, the Baby, and the Manchester Mark 1 developed from it, quickly attracted the attention of the United Kingdom government, who contracted the electrical engineering firm of Ferranti to produce a commercial version. The resulting machine, the Ferranti Mark 1, was the world's first commercially available general-purpose computer. (Full article...)
Image 5
Sinclair Scientific calculator photographed c. 1974
The Sinclair Scientific was a 12-function, pocket-sized scientific calculator introduced in 1974, dramatically undercutting in price other calculators available at the time. The Sinclair Scientific Programmable, released a year later, was advertised as the first budget programmable calculator.
Significant modifications to the algorithms used meant that a chipset intended for a four-function calculator was able to process scientific functions, but at the cost of reduced speed and accuracy. Compared to contemporary scientific calculators, some functions were slow to execute, and others had limited accuracy or gave the wrong answer, but the cost of the Sinclair was a fraction of the cost of competing calculators. (Full article...)
Image 6
Sinclair Executive Type 1
The Sinclair Executive was the world's first "slimline" pocket calculator, and the first to be produced by Clive Sinclair's company Sinclair Radionics. Introduced in 1972, the calculator was produced in at least two versions with different keyboard markings; a variant called the Sinclair Executive Memory was introduced in 1973.
Its small size was made possible by pulsing current to the Texas Instruments TMS1802 "calculator on a chip" integrated circuit, reducing the power consumption more than tenfold. The Executive was highly successful, making £1.8 million of profit for Sinclair and winning a Design Council Award for Electronics. (Full article...)
Image 7
The first-generation iPad (/ˈaɪpæd/; EYE-pad) (retrospectively referred to unofficially as the iPad 1 or original iPad) is a tablet computer designed and marketed by Apple Inc. as the first device in the iPad lineup of tablet computers. It features an Apple A4SoC, a 9.7 in (250 mm) touchscreen display, and, on certain variants, the capability of accessing cellular networks. Using the iOS operating system, the iPad can play music, send and receive emails and browse the web. Other functions, which include the ability to play games and access references, GPS navigation software and social network services, can be enabled by downloading apps.
The device was announced and unveiled on January 27, 2010, by Steve Jobs, Apple's CEO, at an Apple press event. On April 3, 2010, the Wi-Fi variant of the device was released in the United States, followed by the release of the "Wi-Fi + 3G" variant on April 30. On May 28, 2010, it was released in Australia, Canada, France, Japan, Italy, Germany, Spain, Switzerland and the United Kingdom. (Full article...)
Image 8
Constant k filters, also k-type filters, are a type of electronic filter designed using the image method. They are the original and simplest filters produced by this methodology and consist of a ladder network of identical sections of passive components. Historically, they are the first filters that could approach the ideal filter frequency response to within any prescribed limit with the addition of a sufficient number of sections. However, they are rarely considered for a modern design, the principles behind them having been superseded by other methodologies which are more accurate in their prediction of filter response. (Full article...)
Image 9
The NAD 3020 is a stereo integrated amplifier by NAD Electronics, considered to be one of the most important components in the history of high fidelity audio. Launched in 1978, this highly affordable product delivered a good quality sound, which acquired a reputation as an audiophile amplifier of exceptional value. By 1998, the NAD 3020 had become the most well known and best-selling audio amplifier in history. (Full article...)
Image 10
Analogue filters are a basic building block of signal processing much used in electronics. Amongst their many applications are the separation of an audio signal before application to bass, mid-range, and tweeterloudspeakers; the combining and later separation of multiple telephone conversations onto a single channel; the selection of a chosen radio station in a radio receiver and rejection of others.
Passive linear electronic analogue filters are those filters which can be described with linear differential equations (linear); they are composed of capacitors, inductors and, sometimes, resistors (passive) and are designed to operate on continuously varying analogue signals. There are many linear filters which are not analogue in implementation (digital filter), and there are many electronic filters which may not have a passive topology – both of which may have the same transfer function of the filters described in this article. Analogue filters are most often used in wave filtering applications, that is, where it is required to pass particular frequency components and to reject others from analogue (continuous-time) signals. (Full article...)
Image 11
A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if the far end of the line is not terminated in its characteristic impedance. This can happen, for instance, if two lengths of dissimilar transmission lines are joined.
This article is about signal reflections on electrically conducting lines. Such lines are loosely referred to as copper lines, and indeed, in telecommunications are generally made from copper, but other metals are used, notably aluminium in power lines. Although this article is limited to describing reflections on conducting lines, this is essentially the same phenomenon as optical reflections in fibre-optic lines and microwave reflections in waveguides. (Full article...)
Image 12
The circuit topology of an electronic circuit is the form taken by the network of interconnections of the circuit components. Different specific values or ratings of the components are regarded as being the same topology. Topology is not concerned with the physical layout of components in a circuit, nor with their positions on a circuit diagram; similarly to the mathematical concept of topology, it is only concerned with what connections exist between the components. Numerous physical layouts and circuit diagrams may all amount to the same topology.
Strictly speaking, replacing a component with one of an entirely different type is still the same topology. In some contexts, however, these can loosely be described as different topologies. For instance, interchanging inductors and capacitors in a low-passfilter results in a high-pass filter. These might be described as high-pass and low-pass topologies even though the network topology is identical. A more correct term for these classes of object (that is, a network where the type of component is specified but not the absolute value) is prototype network. (Full article...)
Image 13
The Sinclair Sovereign was a high-end calculator introduced by Clive Sinclair's company Sinclair Radionics in 1976. It was an attempt to escape from the unprofitable low end of the market, and one of the last calculators Sinclair produced. Made with a case of pressed steel that a variety of finishes, it cost between £30 and £60 at a time when other calculators could be purchased for under £5. A number of factors meant that the Sovereign was not a commercial success, including the cost, high import levies on components, competition from cheaper calculators manufactured abroad, and the development of more power-efficient designs using liquid-crystal displays. Though it came with a five-year guarantee, issues such as short battery life limited its usefulness. The company moved on to producing computers soon afterwards.
The ZenFone 6 is a 2019 Android-based smartphone that was manufactured, released, and marketed by Asus. It is the only release in Asus' sixth-generation ZenFone lineup and directly succeeds the ZenFone 5Z. Asus chairman Jonney Shih unveiled the ZenFone 6 on 16 May 2019 in Valencia, Spain, and was released in Spain the following day.
The ZenFone 6 has a larger 6.4-inch (160 mm) display, a faster processor, and upgraded cameras than the ZenFone 5Z. The ZenFone 6's flip-up camera module doubles as a front-facing camera. It is the first mobile device Asus released after restructuring its smartphone division in late 2018. The ZenFone 6 was released in the Indian market as the "Asus 6Z". (Full article...)
Image 15
Slotted lines are used for microwave measurements and consist of a movable probe inserted into a slot in a transmission line. They are used in conjunction with a microwave power source and usually, in keeping with their low-cost application, a low cost Schottky diode detector and VSWR meter rather than an expensive microwave power meter.
Slotted lines can measure standing waves, wavelength, and, with some calculation or plotting on Smith charts, a number of other parameters including reflection coefficient and electrical impedance. A precision variable attenuator is often incorporated in the test setup to improve accuracy. This is used to make level measurements, while the detector and VSWR meter are retained only to mark a reference point for the attenuator to be set to, thus eliminating entirely the detector and meter measurement errors. The parameter most commonly measured by a slotted line is SWR. This serves as a measure of the accuracy of the impedance match to the item under test. This is especially important for transmitting antennas and their feed lines; high standing wave ratio on a radio or TV antenna can distort the signal, increase transmission line loss and potentially damage components in the transmission path, possibly even the transmitter. (Full article...)
For most purposes, the vacuum tube has been replaced by the much smaller, less power-hungry, and less expensive transistor, either as a discrete device or in an integrated circuit. However, tubes are still used in specialized applications, such as in high-end audio systems and high power RF transmitters. Cathode ray tubes are still used as a display device in television sets and computer monitors (although they face serious competition from LCD and plasma displays), and magnetrons are the source of microwaves in microwave ovens.
Roomba is a roboticvacuum cleaner made and sold by iRobot. It is marketed as a Robotic Floorvac. The Roomba was first released in 2002 with updates and new models released in 2003, 2004, 2005 and 2006. As of May 2006[update], over 2 million units have been sold, making it the most successful domestic robot so far. The unit is a disc, thirteen inches (34 cm) in diameter and less than four inches (9 cm) high. A large contact-sensing bumper is mounted on the front half of the unit, with an infrared sensor at its top front center.