Posterior probability

The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule.[1] From an epistemological perspective, the posterior probability contains everything there is to know about an uncertain proposition (such as a scientific hypothesis, or parameter values), given prior knowledge and a mathematical model describing the observations available at a particular time.[2] After the arrival of new information, the current posterior probability may serve as the prior in another round of Bayesian updating.[3]

In the context of Bayesian statistics, the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data. From a given posterior distribution, various point and interval estimates can be derived, such as the maximum a posteriori (MAP) or the highest posterior density interval (HPDI).[4] But while conceptually simple, the posterior distribution is generally not tractable and therefore needs to be either analytically or numerically approximated.[5]

  1. ^ Lambert, Ben (2018). "The posterior – the goal of Bayesian inference". A Student's Guide to Bayesian Statistics. Sage. pp. 121–140. ISBN 978-1-4739-1636-4.
  2. ^ Grossman, Jason (2005). Inferences from observations to simple statistical hypotheses (PhD thesis). University of Sydney. hdl:2123/9107.
  3. ^ Etz, Alex (2015-07-25). "Understanding Bayes: Updating priors via the likelihood". The Etz-Files. Retrieved 2022-08-18.
  4. ^ Gill, Jeff (2014). "Summarizing Posterior Distributions with Intervals". Bayesian Methods: A Social and Behavioral Sciences Approach (Third ed.). Chapman & Hall. pp. 42–48. ISBN 978-1-4398-6248-3.
  5. ^ Press, S. James (1989). "Approximations, Numerical Methods, and Computer Programs". Bayesian Statistics : Principles, Models, and Applications. New York: John Wiley & Sons. pp. 69–102. ISBN 0-471-63729-7.