Powered exoskeleton

An exhibit of the "Future Soldier" designed by the United States Army

A powered exoskeleton is a mobile machine wearable over all or part of the human body, providing ergonomic structural support, and powered by a system of electric motors, pneumatics, levers, hydraulics or a combination of cybernetic technologies, allowing for sufficient limb movement, and providing increased strength, protection and endurance.[1]

Other names include for this include power or (high-tech) armor; powered, cybernetic, robot or robotic (armor) or suit; exo or (hard) suit; frameor augmented mobility.[2])

The exoskeleton is designed to provide better mechanical load tolerance, and its control system aims to sense and synchronize with the user's intended motion and relay the signal to motors which manage the gears. The exoskeleton also protects the user's shoulder, waist, back and thigh against overload, and stabilizes movements when lifting and holding heavy items.[3]

A powered exoskeleton differs from traditional body armor, or a passive exoskeleton, which provides mechanical benefits and protection, but has no actuator, and so relies completely on the user's own muscles for movements, adding more stress and making the user more prone to fatigue.[4][5] The lack of "power assist" is the same difference of a powered exoskeleton to orthotics, as orthosis mainly aims to promote progressively increased muscle work and, in the best case, regain and improve existing muscle functions.

Powered exoskeletons have not developed in the real world as fast as they have in fiction, but currently, there are products that can help humans reduce their energy consumption by as much as 60 percent while carrying things.[6]

  1. ^ Blake McGowan (2019-10-01). "Industrial Exoskeletons: What You're Not Hearing". Occupational Health & Safety. Retrieved 2018-10-10.
  2. ^ Ferguson, Alan (September 23, 2018). "Exoskeletons and injury prevention". Safety+Health Magazine. Retrieved October 19, 2018.
  3. ^ Li, R.M.; Ng, P.L. (2018). "Wearable Robotics, Industrial Robots and Construction Worker's Safety and Health". Advances in Human Factors in Robots and Unmanned Systems. Advances in Intelligent Systems and Computing. Vol. 595. pp. 31–36. doi:10.1007/978-3-319-60384-1_4. ISBN 9783319603834.
  4. ^ Koopman, Axel S.; Kingma, Idsart; Faber, Gert S.; de Looze, Michiel P.; van Dieën, Jaap H. (23 January 2019). "Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks" (PDF). Journal of Biomechanics. 83: 97–103. doi:10.1016/j.jbiomech.2018.11.033. ISSN 0021-9290. PMID 30514627. S2CID 54484633.
  5. ^ Bosch, Tim; van Eck, Jennifer; Knitel, Karlijn; de Looze, Michiel (1 May 2016). "The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work". Applied Ergonomics. 54: 212–217. doi:10.1016/j.apergo.2015.12.003. ISSN 0003-6870. PMID 26851481.
  6. ^ Bogue, Robert (2022-06-30). "Exoskeletons: a review of recent progress". Industrial Robot. 49 (5): 813–818. doi:10.1108/IR-04-2022-0105. ISSN 0143-991X. S2CID 248640941.