Prilezhaev reaction

Prilezhaev reaction
Named after Nikolai Alexandrovich Prilezhaev (also spelled Nikolaj Alexandrovich Prileschajew, Russian: Николай Александрович Прилежаев)
Reaction type Ring forming reaction
Identifiers
Organic Chemistry Portal prilezhaev-reaction
RSC ontology ID RXNO:0000405

The Prilezhaev reaction, also known as the Prileschajew reaction or Prilezhaev epoxidation, is the chemical reaction of an alkene with a peroxy acid to form epoxides.[1] It is named after Nikolai Prilezhaev, who first reported this reaction in 1909.[2] A widely used peroxy acid for this reaction is meta-chloroperoxybenzoic acid (m-CPBA), due to its stability and good solubility in most organic solvents.[1][3] The reaction is performed in inert solvents (C6H14, C6H6, CH2Cl2, CHCl3, CCl4) between -10 and 60 °C with the yield of 60-80%.

An illustrative example is the epoxidation of trans-2-butene with m-CPBA to give trans-2,3-epoxybutane:[4]

The oxygen atom that adds across the double bond of the alkene is taken from the peroxy acid, generating a molecule of the corresponding carboxylic acid as a byproduct. The reaction is highly stereospecific in the sense that the double bond stereochemistry is generally transferred to the relative configuration of the epoxide with essentially perfect fidelity, so that a trans-olefin leads to the stereoselective formation of the trans-2,3-substituted epoxide only, as illustrated by the example above, while a cis-olefin would only give the cis-epoxide. This stereochemical outcome is a consequence of the accepted mechanism, discussed below.

In general, the Prilezhaev reaction epoxidizes the most substituted double bond.[1]

  1. ^ a b c Li, Jie Jack; Corey, E. J. (2007). "Prilezhaev Reaction". Name Reactions of Functional Group Transformations. Wiley-Interscience. pp. 274–281. ISBN 9780470176504.
  2. ^ Prileschajew, Nikolaj (1909). "Oxydation ungesättigter Verbindungen mittels organischer Superoxyde" [Oxidation of unsaturated compounds by means of organic superoxides]. Berichte der deutschen chemischen Gesellschaft (in German). 42 (4): 4811–4815. doi:10.1002/cber.190904204100.
  3. ^ Kürti, László; Czakó, Barbara (2005). Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms. Elsevier Academic Press. p. 362. ISBN 978-0124297852.
  4. ^ Vollhardt, K. Peter C.; Schore, Neil Eric (2011). Organic chemistry: Structure and function (6th ed.). New York: W.H. Freeman. ISBN 9781429204941. OCLC 422757611.