Produced water

A shale gas well being drilled by a drilling rig in Pennsylvania

Produced water is a term used in the oil industry or geothermal industry to describe water that is produced as a byproduct during the extraction of oil and natural gas,[1] or used as a medium for heat extraction.[2][3][4][5] Water that is produced along with the hydrocarbons is generally brackish and saline water in nature.[6] Oil and gas reservoirs often have water as well as hydrocarbons, sometimes in a zone that lies under the hydrocarbons, and sometimes in the same zone with the oil and gas. In geothermal plants, the produced water is usually hot. It contains steam with dissolved solutes and gases, providing important information on the geological, chemical, and hydrological characteristics of geothermal systems.[2] Oil wells sometimes produce large volumes of water with the oil, while gas wells tend to produce water in smaller proportions.

As an oilfield becomes old, its natural drive to produce hydrocarbons decreases leading to decline in production. To achieve maximum oil recovery, waterflooding is often implemented, in which water is injected into the reservoirs to help force the oil to the production wells. In offshore areas, sea water is used. In onshore installations, the injected water is obtained from rivers, treated produced water, or underground. Injected water is treated with many chemicals to make it suitable for injection. The injected water eventually reaches the production wells, and so in the later stages of water flooding, the produced water's proportion ("cut") of the total production increases.

  1. ^ Klemz, Ana Caroline; Weschenfelder, Silvio Edegar; Lima de Carvalho Neto, Sálvio; Pascoal Damas, Mayra Stéphanie; Toledo Viviani, Juliano Cesar; Mazur, Luciana Prazeres; Marinho, Belisa Alcantara; Pereira, Leonardo dos Santos; da Silva, Adriano; Borges Valle, José Alexandre; de Souza, Antônio Augusto U.; Guelli U. de Souza, Selene M. A. (2021-04-01). "Oilfield produced water treatment by liquid-liquid extraction: A review". Journal of Petroleum Science and Engineering. 199: 108282. doi:10.1016/j.petrol.2020.108282. ISSN 0920-4105. S2CID 233073324.
  2. ^ a b Su, Shujuan; Li, Ying; Chen, Zhi; Chen, Qifeng; Liu, Zhaofei; Lu, Chang; Hu, Le (2022-06-01). "Geochemistry of geothermal fluids in the Zhangjiakou-Penglai Fault Zone, North China: Implications for structural segmentation". Journal of Asian Earth Sciences. 230: 105218. Bibcode:2022JAESc.23005218S. doi:10.1016/j.jseaes.2022.105218. ISSN 1367-9120. S2CID 248019293.
  3. ^ Song, Guofeng; Song, Xianzhi; Ji, Jiayan; Wu, Xiaoguang; Li, Gensheng; Xu, Fuqiang; Shi, Yu; Wang, Gaosheng (2022-03-01). "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system". Renewable Energy. 186: 126–142. doi:10.1016/j.renene.2021.12.133. ISSN 0960-1481. S2CID 245682408.
  4. ^ Tao, Jian; Yang, Xing-Guo; Ding, Pei-Pei; Li, Xi-Long; Zhou, Jia-Wen; Lu, Gong-Da (2022-06-05). "A fully coupled thermo-hydro-mechanical-chemical model for cemented backfill application in geothermal conditions". Engineering Geology. 302: 106643. doi:10.1016/j.enggeo.2022.106643. ISSN 0013-7952. S2CID 247848365.
  5. ^ Li, S.; Wang, S.; Tang, H. (2022-03-01). "Stimulation mechanism and design of enhanced geothermal systems: A comprehensive review". Renewable and Sustainable Energy Reviews. 155: 111914. doi:10.1016/j.rser.2021.111914. ISSN 1364-0321. S2CID 244823147.
  6. ^ D. Atoufi, Hossein; Lampert, David J. (2020). "Impacts of Oil and Gas Production on Contaminant Levels in Sediments". Current Pollution Reports. 6 (2): 43–53. doi:10.1007/s40726-020-00137-5. ISSN 2198-6592. S2CID 211080984 – via Springer Nature.