Project Denver

Nvidia Denver 1/2
General information
Launched2014 (Denver)
2016 (Denver 2)
Designed byNvidia
Cache
L1 cache192 KiB per core
(128 KiB I-cache with parity, 64 KiB D-cache with ECC)
L2 cacheMiB @ 2 cores
Architecture and classification
Technology node28 nm (Denver 1) to 16 nm (Denver 2)
Instruction setARMv8-A
Physical specifications
Cores
  • 2
Nvidia Carmel
General information
Launched2018
Designed byNvidia
Max. CPU clock rateto 2.3 GHz 
Cache
L1 cache192 KiB per core
(128 KiB I-cache with parity, 64 KiB D-cache with ECC)
L2 cacheMiB @ 2 cores
L3 cache(4 MiB @ 8 cores, T194[1])
Architecture and classification
Technology node12 nm
Instruction setARMv8.2-A
Physical specifications
Cores
  • 2

Project Denver is the codename of a central processing unit designed by Nvidia that implements the ARMv8-A 64/32-bit instruction sets using a combination of simple hardware decoder and software-based binary translation (dynamic recompilation) where "Denver's binary translation layer runs in software, at a lower level than the operating system, and stores commonly accessed, already optimized code sequences in a 128 MB cache stored in main memory".[2] Denver is a very wide in-order superscalar pipeline. Its design makes it suitable for integration with other SIPs cores (e.g. GPU, display controller, DSP, image processor, etc.) into one die constituting a system on a chip (SoC).

Project Denver is targeted at mobile computers, personal computers, servers, as well as supercomputers.[3] Respective cores have found integration in the Tegra SoC series from Nvidia. Initially Denver cores was designed for the 28 nm process node (Tegra model T132 aka "Tegra K1"). Denver 2 was an improved design that built for the smaller, more efficient 16 nm node. (Tegra model T186 aka "Tegra X2").

In 2018, Nvidia released an improved design (codename: "Carmel", based on ARMv8 (64-bit; variant: ARM-v8.2[4] with 10-way superscalar, functional safety, dual execution, parity & ECC) got integrated into the Tegra Xavier SoC offering a total of 8 cores (or 4 dual-core pairs).[5][failed verification] The Carmel CPU core supports full Advanced SIMD (ARM NEON), VFP (Vector Floating Point), and ARMv8.2-FP16.[6] First published testings of Carmel cores integrated in the Jetson AGX development kit by third party experts took place in September 2018 and indicated a noticeably increased performance as should expected for this real world physical manifestation compared to predecessors systems, despite all doubts the used quickness of such a test setup in general an in particular implies.[7] The Carmel design can be found in the Tegra model T194 ("Tegra Xavier") that is designed with a 12 nm structure size.

  1. ^ NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in Robotics by Dustin Franklin (Nvidia development team for Jetson), December 12, 2018
  2. ^ Wasson, Scott (August 11, 2014). "Nvidia claims Haswell-class performance for Denver CPU core". The Tech Report. Retrieved August 14, 2014.
  3. ^ Dally, Bill (January 5, 2011). ""PROJECT DENVER" PROCESSOR TO USHER IN NEW ERA OF COMPUTING". Official Nvidia blog.
  4. ^ NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in Robotics by Dustin Franklin (Nvidia development team for Jetson), December 12, 2018
  5. ^ NVIDIA Drive Xavier SOC Detailed by Hassan Mujtaba on Jan 8, 2018 via WccfTech
  6. ^ NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in Robotics by Dustin Franklin (Nvidia development team for Jetson), December 12, 2018
  7. ^ "A Quick Test of NVIDIA's "Carmel" CPU Performance".