Project Rover

Kiwi
Kiwi A Prime on test stand
Country of originUnited States
DesignerLos Alamos Scientific Laboratory
ManufacturerLos Alamos Scientific Laboratory
ApplicationResearch and development
SuccessorNERVA
StatusRetired
Liquid-fuel engine
PropellantLiquid hydrogen
Performance
Thrust, vacuum245,000 N (55,000 lbf)
Chamber pressure3,450 kilopascals (500 psi)
Specific impulse, vacuum834 seconds (8.18 km/s)
Burn time480 seconds
Restarts1
Dimensions
Length140 centimeters (54 in) (core)
Diameter80 centimeters (32 in) (core)
Nuclear reactor
Operational1959 to 1964
StatusDecommissioned
Main parameters of the reactor core
Fuel (fissile material)Highly enriched uranium
Fuel stateSolid
Neutron energy spectrumThermal
Primary control methodControl drums
Primary moderatorNuclear graphite
Primary coolantLiquid hydrogen
Reactor usage
Power (thermal)937 MW
References
References[1]
NotesData is for Kiwi B4E version.

Project Rover was a United States project to develop a nuclear-thermal rocket that ran from 1955 to 1973 at the Los Alamos Scientific Laboratory (LASL). It began as a United States Air Force project to develop a nuclear-powered upper stage for an intercontinental ballistic missile (ICBM). The project was transferred to NASA in 1958 after the Sputnik crisis triggered the Space Race. It was managed by the Space Nuclear Propulsion Office (SNPO), a joint agency of the Atomic Energy Commission (AEC), and NASA. Project Rover became part of NASA's Nuclear Engine for Rocket Vehicle Application (NERVA) project and henceforth dealt with the research into nuclear rocket reactor design, while NERVA involved the overall development and deployment of nuclear rocket engines, and the planning for space missions.

Nuclear reactors for Project Rover were built at LASL Technical Area 18 (TA-18), also known as the Pajarito Canyon Site. They were tested there at very low power and then shipped to Area 25 (known as Jackass Flats) at the AEC's Nevada Test Site. Testing of fuel elements and other materials science was done by the LASL N-Division at TA-46 using various ovens and later a custom test reactor, the Nuclear Furnace. Project Rover resulted in the development of three reactor types: Kiwi (1955 to 1964), Phoebus (1964 to 1969), and Pewee (1969 to 1972). Kiwi and Phoebus were large reactors, while Pewee was much smaller, conforming to the smaller budget available after 1968.

The reactors were fueled by highly enriched uranium, with liquid hydrogen used as both a rocket propellant and reactor coolant. Nuclear graphite and beryllium were used as neutron moderators and neutron reflectors. The engines were controlled by drums with graphite or beryllium on one side and boron (a nuclear poison) on the other, and the energy level adjusted by rotating the drums. Because hydrogen also acts as a moderator, increasing the flow of propellant also increased reactor power without the need to adjust the drums. Project Rover tests demonstrated that nuclear rocket engines could be shut down and restarted many times without difficulty, and could be clustered if more thrust was desired. Their specific impulse (efficiency) was roughly double that of chemical rockets.

The nuclear rocket enjoyed strong political support from the influential chairman of the United States Congress Joint Committee on Atomic Energy, Senator Clinton P. Anderson from New Mexico (where LASL was located), and his allies, Senators Howard Cannon from Nevada and Margaret Chase Smith from Maine. This enabled it to survive multiple cancellation attempts that became ever more serious in the cost cutting that prevailed as the Vietnam War escalated and after the space race ended with the Apollo 11 Moon landing. Projects Rover and NERVA were canceled over their objection in January 1973, and none of the reactors ever flew.

  1. ^ Finseth 1991, p. C-2.