Lie groups and Lie algebras |
---|
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group
where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
The projective special linear group, PSL, is defined analogously, as the induced action of the special linear group on the associated projective space. Explicitly:
where SL(V) is the special linear group over V and SZ(V) is the subgroup of scalar transformations with unit determinant. Here SZ is the center of SL, and is naturally identified with the group of nth roots of unity in F (where n is the dimension of V and F is the base field).
PGL and PSL are some of the fundamental groups of study, part of the so-called classical groups, and an element of PGL is called projective linear transformation, projective transformation or homography. If V is the n-dimensional vector space over a field F, namely V = Fn, the alternate notations PGL(n, F) and PSL(n, F) are also used.
Note that PGL(n, F) and PSL(n, F) are isomorphic if and only if every element of F has an nth root in F. As an example, note that PGL(2, C) = PSL(2, C), but that PGL(2, R) > PSL(2, R);[1] this corresponds to the real projective line being orientable, and the projective special linear group only being the orientation-preserving transformations.
PGL and PSL can also be defined over a ring, with an important example being the modular group, PSL(2, Z).