Promethium

Promethium, 61Pm
Promethium
Pronunciation/prˈmθiəm/ (proh-MEE-thee-əm)
Appearancemetallic
Mass number[145]
Promethium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Pm

Np
neodymiumpromethiumsamarium
Atomic number (Z)61
Groupf-block groups (no number)
Periodperiod 6
Block  f-block
Electron configuration[Xe] 4f5 6s2
Electrons per shell2, 8, 18, 23, 8, 2
Physical properties
Phase at STPsolid
Melting point1315 K ​(1042 °C, ​1908 °F)
Boiling point3273 K ​(3000 °C, ​5432 °F)
Density (at 20° C)α-145Pm: 7.149 g/cm3
α-147Pm: 7.247 g/cm3[1]
Heat of fusion7.13 kJ/mol
Heat of vaporization289 kJ/mol
Atomic properties
Oxidation statescommon: +3
+2?
ElectronegativityPauling scale: 1.13 (?)
Ionization energies
  • 1st: 540 kJ/mol
  • 2nd: 1050 kJ/mol
  • 3rd: 2150 kJ/mol
Atomic radiusempirical: 183 pm
Covalent radius199 pm
Color lines in a spectral range
Spectral lines of promethium
Other properties
Natural occurrencefrom decay
Crystal structuredouble hexagonal close-packed (dhcp) (hP4)
Lattice constants
Double hexagonal close packed crystal structure for promethium
a = 0.36393 pm
c = 1.1739 pm (at 20 °C)[1]
Thermal expansion9.0×10−6/K (at r.t.)[2][a]
Thermal conductivity17.9 W/(m⋅K)
Electrical resistivityest. 0.75 µΩ⋅m (at r.t.)
Magnetic orderingparamagnetic[3]
Young's modulusα form: est. 46 GPa
Shear modulusα form: est. 18 GPa
Bulk modulusα form: est. 33 GPa
Poisson ratioα form: est. 0.28
CAS Number7440-12-2
History
DiscoveryCharles D. Coryell, Jacob A. Marinsky, Lawrence E. Glendenin (1945)
Named byGrace Mary Coryell (1945)
Isotopes of promethium
Main isotopes[4] Decay
abun­dance half-life (t1/2) mode pro­duct
145Pm synth 17.7 y ε 145Nd
α 141Pr
146Pm synth 5.53 y ε 146Nd
β 146Sm
147Pm trace 2.6234 y β 147Sm
 Category: Promethium
| references

Promethium is a chemical element with symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in the Earth's crust at any given time. Promethium is one of the only two radioactive elements that are both preceded and followed in the periodic table by elements with stable forms, the other being technetium. Chemically, promethium is a lanthanide. Promethium shows only one stable oxidation state of +3.

In 1902 Bohuslav Brauner suggested that there was a then-unknown element with properties intermediate between those of the known elements neodymium (60) and samarium (62); this was confirmed in 1914 by Henry Moseley, who, having measured the atomic numbers of all the elements then known, found that the element with atomic number 61 was missing. In 1926, two groups (one Italian and one American) claimed to have isolated a sample of element 61; both "discoveries" were soon proven to be false. In 1938, during a nuclear experiment conducted at Ohio State University, a few radioactive nuclides were produced that certainly were not radioisotopes of neodymium or samarium, but there was a lack of chemical proof that element 61 was produced, and the discovery was not much recognized. Promethium was first produced and characterized at Oak Ridge National Laboratory in 1945 by the separation and analysis of the fission products of uranium fuel irradiated in a graphite reactor. The discoverers proposed the name "prometheum" (the spelling was subsequently changed), derived from Prometheus, the Titan in Greek mythology who stole fire from Mount Olympus and brought it down to humans, to symbolize "both the daring and the possible misuse of mankind's intellect". A sample of the metal was made only in 1963.

The two sources of natural promethium are rare alpha decays of natural europium-151 (producing promethium-147) and spontaneous fission of uranium (various isotopes). Promethium-145 is the most stable promethium isotope, but the only isotope with practical applications is promethium-147, chemical compounds of which are used in luminous paint, atomic batteries and thickness-measurement devices. Because natural promethium is exceedingly scarce, it is typically synthesized by bombarding uranium-235 (enriched uranium) with thermal neutrons to produce promethium-147 as a fission product.

  1. ^ a b c Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  2. ^ Cverna, Fran (2002). "Ch. 2 Thermal Expansion". ASM Ready Reference: Thermal properties of metals (PDF). ASM International. ISBN 978-0-87170-768-0.
  3. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  4. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).