Pronic number

A pronic number is a number that is the product of two consecutive integers, that is, a number of the form .[1] The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,[2] or rectangular numbers;[3] however, the term "rectangular number" has also been applied to the composite numbers.[4][5]

The first few pronic numbers are:

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462 … (sequence A002378 in the OEIS).

Letting denote the pronic number , we have . Therefore, in discussing pronic numbers, we may assume that without loss of generality, a convention that is adopted in the following sections.

  1. ^ Conway, J. H.; Guy, R. K. (1996), The Book of Numbers, New York: Copernicus, Figure 2.15, p. 34.
  2. ^ Knorr, Wilbur Richard (1975), The evolution of the Euclidean elements, Dordrecht-Boston, Mass.: D. Reidel Publishing Co., pp. 144–150, ISBN 90-277-0509-7, MR 0472300.
  3. ^ Cite error: The named reference hist was invoked but never defined (see the help page).
  4. ^ "Plutarch, De Iside et Osiride, section 42", www.perseus.tufts.edu, retrieved 16 April 2018
  5. ^ Higgins, Peter Michael (2008), Number Story: From Counting to Cryptography, Copernicus Books, p. 9, ISBN 9781848000018.