Pseudo-reductive group

In mathematics, a pseudo-reductive group over a field k (sometimes called a k-reductive group) is a smooth connected affine algebraic group defined over k whose k-unipotent radical (i.e., largest smooth connected unipotent normal k-subgroup) is trivial. Over perfect fields these are the same as (connected) reductive groups, but over non-perfect fields Jacques Tits found some examples of pseudo-reductive groups that are not reductive. A pseudo-reductive k-group need not be reductive (since the formation of the k-unipotent radical does not generally commute with non-separable scalar extension on k, such as scalar extension to an algebraic closure of k). Pseudo-reductive groups arise naturally in the study of algebraic groups over function fields of positive-dimensional varieties in positive characteristic (even over a perfect field of constants).

Springer (1998) gives an exposition of Tits' results on pseudo-reductive groups, while Conrad, Gabber & Prasad (2010) builds on Tits' work to develop a general structure theory, including more advanced topics such as construction techniques, root systems and root groups and open cells, classification theorems, and applications to rational conjugacy theorems for smooth connected affine groups over arbitrary fields. The general theory (with applications) as of 2010 is summarized in Rémy (2011), and later work in the second edition Conrad, Gabber & Prasad (2015) and in Conrad & Prasad (2016) provides further refinements.