Quantum 1/f noise

Quantum 1/f noise is an intrinsic and fundamental part of quantum mechanics. Fighter pilots, photographers, and scientists all appreciate the higher quality of images and signals resulting from the consideration of quantum 1/f noise. Engineers have battled unwanted 1/f noise since 1925, giving it poetic names (such as flicker noise, funkelrauschen, bruit de scintillation, etc.) due to its mysterious nature. The Quantum 1/f noise theory was developed about 50 years later, describing the nature of 1/f noise, allowing it to be explained and calculated via straightforward engineering formulas. It allows for the low-noise optimization of materials, devices and systems of most high-technology applications of modern industry and science. The theory includes the conventional and coherent quantum 1/f effects (Q1/fE). Both effects are combined in a general engineering formula, and present in Q1/f noise, which is itself most of fundamental 1/f noise. The latter is defined as the result of the simultaneous presence of nonlinearity and a certain type of homogeneity in a system, and can be quantum or classical.

The conventional Q1/fE represents 1/f fluctuations caused by bremsstrahlung, decoherence and interference in the scattering of charged particles off one another, in tunneling or in any other process in solid state physics and in general.